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1 Getting Started: Denis Auroux

This seminar is on the symplectic geometry version of mirror symmetry, and we’ll be focusing on Homo-
logical mirror symmetry. This means our viewpoint will be based around Kontsevich’s Homological Mirror
Symmetry conjecture.

1.1 Where does this conjecture come from?

In the 1990’s, the constraints of symmetry led string theorists to conclude that the universe was modeled by
a 10 dimensional manifold. This consists of a 4 dimensional flat component (which gives the large space-time
dimension that we see,) and a Calabi-Yau 3-fold X. At the expense of reducing the predictive power of the
theory, they produced 2 interesting mathematical models of string theory – which they call the A and B
models of string theory. Each of these models study different kinds of submanifolds of X called branes but
roughly:

� The A model studies the symplectic geometry of X.

� The B model studies the algebraic geometry of X.

If we fix a Calabi-Yau X, the A and B models are quite different. However, it is believed that for every X
there is a new manifold, X∨, for which the A model on X corresponds to the B model on X∨.

Conjecture 1 (Mirror Symmetry). For every Calabi-Yau X, there is a mirror manifold X∨ such that
symplectic invariants on X correspond to algebraic geometry of X∨, and vice versa.

While Mirror Symmetry now studies many different families of manifolds, it started with Calabi-Yau
3-folds.

Definition 1 (Calabi-Yau). A Kähler manifold is a complex manifold (X,J), with a 2-form ω which satisfies
the following conditions:

� dω = 0

� ω(v, Jw) is a metric on the space.

If we can pick a holomorphically non-vanishing Ω ∈ Ωn,0(X), then we say that X is (weakly) Calabi-Yau. If
in addition ∣Ω∣g is constant, we say that X is strongly Calabi-Yau.

As a generalization, let X be a suitable Kähler manifold. Then the mirror X∨ would be a Kähler manifold
with W ∶ X∨ → C a global holomorphic function. Note that if W is nonconstant, then X∨ is not compact.
The name for this generalization is called a Landau-Ginzburg Model.

Historically, it was thought that there were only a few examples of Calabi-Yaus. One of the first known
examples was that of the quintic threefold in CP4.

Example 1 (Complex Tori). Let Λ ⊂ Cn be a lattice. Then Cn/Λ is a Calabi-Yau 1

Example 2 (Quintic Threefold). The locus ∑4
i=0 z

5
i = 0 in CP4, is a Calabi-Yau 3-fold.

In physics, each Calabi-Yau gives a different model for physics and this led to a search for new Calabi-
Yaus. It was initially hoped that there would be a small number of Calabi-Yau 3-folds, but many were
eventually found. It was noticed that when a Calabi-Yau manifold X was found, there was usually another
Calabi-Yau X∨ with interchanged Hodge diamond data. The name “Mirror Symmetry” comes from this
interchange in the Hodge diamond. For a Calabi-Yau 3-fold, H1,1(X) is a moduli space of Kähler forms,
and H1,2 is a moduli space of complex structures. The mirror correspondence is suppose to switch these

1Some folks add the extra condition that X be simply connected to the definition of Calabi-Yau.
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moduli spaces.
By 2000, [KS00] had found 30,108 different pairs of Hodge number data, and the construction used produced
many of these mirror pairs.
Closed-string mirror symmetry was predicted a matching of enumerative invariants between symplectic
and algebraic geometry. The A model was interested in counting the number of almost complex curves
representing a class in homology, while the B model looked at periods of holomorphic functions coming from
Hodge theory. In 1990, Candelas, Ossa, Green and Parks predicted that these invariants were interchanged
by mirror symmetry. While periods of holomorphic functions could be computed, counting holomorphic
curves was a difficult problem. In [CXGP91] , they produced accurate counts of the number of degree k
curves in the quintic threefold. Their method relied on physical intuition that took some time to make
mathematically rigorous. The framework for these theories were fleshed out by Givental [Giv99] , and Lian-
Liu-Yau [LLY97]. This flavor of mirror symmetry is called “closed string mirror symmetry.” Here are some
geometric attributes conjectured to be switched by the mirror correspondence:

A model on X B model on X∨

Symplectic Structures and deformations Complex Structures and Deformations
h1,1(X) h1,2(X)

Gromov-Witten Invariants Gauss-Manin Connection
Fukaya Category Derived Category of Coherent Sheaves

Kontsevich in [Kon94] gave a precise meaning to what the open-string version of mirror symmetry. In
our case, we will be looking at the case of disks.

Conjecture 2 (Kontesvich HMS, 1994-). Suppose that X and X∨ are a mirror pair. Then F(X,ω) , the
Fukaya category, of X and Coh(X∨) , category of coherent sheaves, are derived equivalent.

What are these different categories? Roughly:

� On the A-side, the Fukaya Category of X has as objects Lagrangian submanifolds whose morphisms
are given by taking counts of intersections between them. To make this rigorous, we will have to take
a count up to Lagrangian Floer Homology,

hom(L0, L1) = CF ∗(L0, L1).

Composition of morphisms will be done by counting disks with boundaries on 3 Lagrangians. This will
not be associative, but will satisfy the A∞ relations.

� On the B side, we look at coherent sheaves. During this seminar, we won’t go into much depth about
coherent sheaves, but here is one intuition that can be used. Coherent sheaves are the sheaves which
can be constructed as cokernels of maps between holomorphic vector bundles. If you think of these as
submanifolds, you want to look at not just the intersections of these, but also the homology of these
with coefficient in the holomorphic vector bundles.

Why do we look at the derived versions of these categories? The basic reason is that we don’t know how
to define things like kernels and cokernels are in the Fukaya category, and the derived category enlarges the
Fukaya category with mapping cones giving it kernels and cokernels. On the Coherent sheaf side, this allows
us to only thing about holomorphic vector bundles.

1.2 A timeline for Homological Mirror Symmetry

� 1998: Polishchuk-Zaslow prove mirror symmetry for T 2. [PZ98]
The symplectic geometry of T 2 is quite simple: the only important quantity is ∫T 2 ω, which is given by
a single number. On the mirror side, we have the torus now viewed as an elliptic curve, E = C/Z+ τZ.
In this case, the mirror pairing is given by τ = iA. The correspondence is given by

4



– L0 corresponds with O, the structure sheaf.

– Lp corresponds to the skyscraper sheaf Op.
– La,b corresponds to a degree 1 line bundle , where a and b describe the homology class of this

Lagrangian submanifold.

In T 2 the correspondence can be checked by hand. For instance:

– hom(L0, L1) is C, because there is a one dimensional space of morphism, as these Lagrangians
intersect at a single point. This matches on the nose with hom(O → L) = C.

– hom(L1, Lp) is similarly C, because there is a one dimensional space generated by the intersection
point, and it again matches with hom(L → Op).

– The composition map on theB model side corresponds to the theta function θ(τ, z) = ∑n∈Z eπin
2τ+2πinz,

which is almost τ periodic. On the A model side, there are many triangles that have boundaries
linking the 3 intersection points. If counted with weights e−area, these triangles calculate out the
value of the θ function.

This is the first good piece of evidence for homological mirror symmetry.

� 2001: Kontsevich - Soibelman start looking at T 4 through torus fibrations [KS01] Abouzaid and Smith
finished the program in 2008 [AS+10] for the four-torus.

� 2003: Seidel proves Homological mirror symmetry for K3 [Sei03b] using the machinery Picard Lefschetz
theory, [Sei08].

� 2011: Sheridan proves it for the quintic 3-fold [She11].

Outside of the Calabi-Yau case, there has been a surprising amount of success. Versions of homological
mirrors symmetry have been proven for CP1,CP2, blowups and toric varieties.

1.3 Common Techniques

Initial attempts look at actually computing out the Fukaya category of a manifold, and matching the cat-
egories on the nose. In general, we have no idea what the Lagrangian submanifolds of a manifold are. For
example, we do not even know what the Lagrangians are inside R6. By Darboux’s theorem, we know that
we can find a copy of symplectic R6 inside every Calabi-Yau 3-fold.
However, there is hope for calculating Fukaya categories. Homological mirror symmetry states that we are
not interested in Lagrangians of a manifold; we are only interested in their Floer homology. We can use this
to our advantage by using the tools of homological algebra to extract large amounts of data about Fuk(X,ω)
based on some choice Lagrangians.
When we look at the derived category of the Fukaya category, we can look at a small set of generating
Lagrangians which give the whole derived category through iteration of the mapping cone process. For
example, on the elliptic curve, L0 and Lp can generate all of the other Lagrangians through this mapping
cone process. The good news is that we can show that we can find a set of Lagrangians that generate, and
completely understand the derived Fukaya category. The general scheme to prove that these Lagrangians
can generate is to find for every Lagrangian L a diagram of the form

L L

Generators Gi

id

∃ ∃

This also gives us a way to construct the mirror symmetry correspondence. Suppose we can find some
generating sets of F and DbCoh(C∨), and check that the A∞ morphisms match up. This means that we
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need to check a lot of morphisms, which is hard! The way we get around this is by using deformation theory
to classify A −∞ algebras. This can be computed using Hochschild cohomology.
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2 Lagrangian Floer Cohomology: Andrew Hanlon

The main source for this talk is [Aur14]. In this talk, we will use the following notation:

� (M,ω) is a symplectic manifold.

� Recall, L ⊂M is called Lagrangian if ω∣Ln = 0, and dimL = 1
2

dimM . Some examples include Rn ⊂ Cn
with the standard symplectic form, or the image of a one form in the cotangent bundle with standard
symplectic structure. We will today assume that Lagrangians are compact.

� If H ∈ C∞(M ×[0,1],R) is a function, we define it’s Hamiltonian vector field XH with the convention

ω(⋅,XHt) = dHt,

and ψ = ψ1 to be the time one flow of the Hamiltonian vector field.

� We also have a choice of almost complex structure J ∶ TM → TM which is compatible with the
symplectic structure. We define the metric

g(v,w) ∶= ω(v, Jw).

The space of such J is contractible and non-empty.

The motivation for Floer theory comes from Arnold’s conjecture on the number of fixed points of ψ.

Theorem 1 (Arnold Conjecture, [Flo88]). If the symplectic area of any disc in M with boundary in L
vanishes and L ⋔ ψ(L), then

∣L ∩ ψ(L)∣ ≥ ∑
i

Hi(L,Z/2Z).

The example that we will constantly return to is Lagrangians in the symplectic cylinder M = T ∗S.

Example 3 (Symplectic Cylinder). Let M be the cylinder and let L be a meridian of the cylinder. Then
every hamiltonian flow of L will have 2 intersection points. This follows from the for this particular choice
of L, the signed area between L and ψ(L) is zero.

p

q

L1

L0

In particular, you cannot displace the equatorial Lagrangian from itself. Notice that L satisfies the condition
as L bounds no disks in M .
However, if L does bound a disk, we have a counterexample where an Hamiltonian isotopy of L and itself
have no common intersection. For the same isotopy in the previous example, we have the following pair of
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non-intersecting Lagrangians.

L1

L0

Our sketch of the proof of 1 will involve a homology theory whose differential counts pseudoholomorphic
disks. Here is an outline of the rest of these notes:

� In 2.1, we describe the moduli space of pseudoholomorphic strips. In suitably nice cases, we will show
that this space is compact up to a phenomenon called bubbling.

� In 2.2 we set up the Floer cochain complex. Let L0, L1 be two Lagrangians that intersect transversely.
Define CF (L,L1) to be the free Z2 module generated by the intersection points of L0 and L1. This
is equipped with differential ∂ ∶ CF (L0, L1) → CF (L0, L1) which counts the number of J holomorphic
strips that flow from one intersection point to the next.

� In 2.3, we describe how to index the Floer cochain complex based on the geometry of the Lagrangians.

� 2.4 proves that if L1 and L′1 are Hamiltonian isotopic, there exists chain homotopy between HF (L0, L1

and HF (L0, L
′
1). We also outline an isomorphism between HF (L,L1) = H∗(L) when L1 and L are

hamiltonian isotopic.

� 2.5 describes what can be done in the case when the Lagrangians bound disks.

2.1 Holomorphic Curves

Definition 2 (J-holomorphic Strips). Let L0 and L1 be two Lagrangian submanifolds of L. A J-holomorphic
strip between L0 and L1 is a map

u ∶ R × [0,1] →M

satisfying the following properties:

� Pseudoholomorphic ∂̄Ju = 0.

� Boundary Conditions u(s,0) ∈ L0 and u(s,1) ∈ L1).

� Bounded Energy E(u) = ∫R×[0,1] u∗ω < ∞.

We say that this strip runs from p to q if lims→∞ u(s, t) = p and lims→−∞ u(s, t) = q.2

The linearization D∂̄J ,u at a solution u is a Fredholm operator on some appropriate Banach space.

Definition 3 (Moduli Spaces). let M̂(p, q; [u], J) be the space of J holomorphic strips from p to q in the
same class of [u] ∈ π2(M,L1 ∪ L1). There is an R action on this space by translation, and we quotient our
moduli space by this reparameterization

M(p, q; [u], J) ∶= M̂(p, q; [u], J)/R.
2Note the weird direction here. This is because we are defining Floer Cohomology. In the homology, the strips run in the

other direction.
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Theorem 2. If D∂̄J ,u is surjective, then M̂ is a manifold, and dim M̂ = ∫ D∂̄J ,u ∶= ind[u].

There are 2 nice properties that we would like M would have: compactness and orientation. Compact-
ness comes from this condition on the non-existence of disks with symplectic area, and orientation can be
determined by putting spin structures on our Lagrangians. We will assume that we are working in the case
where M has these properties, so that M(p, q); [u], J) is a compact 0-dimensional manifold if ind(u) = 1.
We want to count these strips taking into account their energy. To do so, we need to use a slightly strange
ring for our coefficients.

Definition 4. Let K be a field. Define the Novikov ring over k to be

Λ0 ∶= {
∞
∑
i=0

∶ a ∈ K, λi ≥ 0, and lim
i→∞

λi = +∞}.

The Novikov field is similarly defined Λ = Frac(Λ0)). In terms of power series, it is

Λ0 ∶= {
∞
∑
i=0

∶ a ∈ K, λi ∈ R, lim
i→∞

λi = +∞}.

2.2 Floer Theory

Definition 5. Let M be a symplectic manifold satisfying the above conditions, and L0, L1 be two Lagrangian
submanifolds. Define CF (L0, L1) to be the set of intersection points of L0 and L1. Let p ∈ L0 ∩L1.

∂p ∶= ∑
q∈L1∩L1

ind[u]=1

#M(p, q; [u], J))Tω([u])q

where ω([u]) = ∫ u∗ω, and the count # is being made with sign chosen by orientation.

The use of Novikov coefficients is so we can count infinitely many disks. Gromov compactness states
that there are finitely many disks of bounded symplectic area, so if we have infinitely many disks, they must
diverge in symplectic area and therefore give us a count in the Novikov field. In the exact case, where ω = dα,
and α∣Li = dfi, we can work over our base field K.

Theorem 3 ([Flo88]). If [ω] ⋅ π2(M,Li) = 0, then ∂ is well defined with respect to some J , ∂2 = 0, and
HF (L0, L1) is independent of Hamiltonian isotopies and choice of J .

Sketch of Proof. We need to address 3 issues for the moduli space:

1. Transversality of D∂̄ .
If L0 ⋔ L1, then it’s enough to take a generic time dependent Jt. If you are willing to work with a time
dependent J , the generically you will have the surjectivity of ∂u

∂s
+ J(u, t)∂u

∂y
= 0.

If L and L1 are not transverse, we can also take a generic Hamiltonian H ∈ C∞(M × [0,1]), and then
perturb the equation to count solutions to ∂u

∂s
+ J(t, u) (∂u

∂t
−XH(u, t)) = 0. Unfortunately, we are no

longer generating CF (L0, L1) by intersection points- we are counting flow lines that start on L0 and
ending on L1. Such a flow line is the same as having an intersection between L0 and ψ−1L0, so if we
can show that this thing is independent of hamiltonian perturbations of Lagrangians, we will recover
a count of intersection points.

2. Compactness of the Moduli Space.
Gromov’s compactness theorem tells us that a sequence of J-holomorphic strips converges to a tree of
J-holomorphic disks and spheres. To see all the possibilities, need to look at where energy blows up
on the domain. In our case, there are 3 possibilities:

9



� If energy builds up at either end of the domain strip, we get strip breaking.

L0

L1

L0 L0

L1 L1

p q p q

� If energy builds up at an interior point, we get a sphere bubble.

L0

L1

L0

L1

p q p qS1

� If energy builds up at the boundary of the domain, and we get a disk bubble. This is very bad!

L0

L1

L0L0

L0

L1

p q p q

D1

For us, we will ignore the second two kinds of bubbling behavior; our condition on the symplectic
energy of disks with boundaries in our Lagrangians forbids the formation of these bubbles.

3. Orientation.
We will ignore this issue, and just hope that we have the signs right.

Now assuming the above, let [u] be a class with ind([u]) = 2 . Gromov compactness produces M̄(p, q; [u], J)
a compact one-dimensional manifold. Furthermore, the compactification has boundary strata which admits
a nice description:

∂M̄(p, q); [u], J) = ⊔
r∈L0∩L1

[u′]+[u′′]=[u]

M(p, r; [u′], J) ×M(r, q; [u′′], J).

where you should think of this as being the two strips that u breaks into in the Gromov compactification.
This behavior goes the other way as well. Suppose we have two more classes decomposing [u] as [u′]+[u′′] =
[u]. Since the index is additive, we haveind[u′] = ind[u′′] = 1. The Gluing lemma implies that all such
strips u′ and u′′ can be realized as a limit of curves ui ∈ [u] which breaks into two strips in the Gromov
compactification.
Therefore, the coefficient of q in ∂2p is exactly

∑
r∈L0∩L1

[u]∶ind[u]=2
[u′]+[u′′]=[u]

(#M(p, r; [u′], J))(#M(r, q; [u′′], J)Tω[u
′]+ω[u′′].

Since this is the count with sign of the boundary of a collection of one dimensional manifolds, the count
comes to 0.

The necessity of our conditions is best given by a counterexample:
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Example 4 (Counterexample to ∂2 = 0. ). Consider in the cylinder two Lagrangians; one given by the
equator and another circle which intersects it at two points.

p q

L1

L0

There are all kinds of holomorphic disks here, and they do not come in the required cancelling pairs!

2.3 Index of Strips

Let LGr(n) be the Lagrange Grassmanian of R2n with standard symplectic form. There is diffeomorphism
between U(n)/O(n). It follows from long exact sequence on homotopy that π1(LGr(n)) ≃ Z, and in fact
det2 ∶ U(n)/O(n) → S1 induces the isomorphism.

Definition 6 (Maslov Index). Let `(t) be a loop in LGr(n). The Maslov index of ` is defined to be the
winding number of det2.

Let M be the ambient manifold, and u ∶ R × [0,1] → M be a J holomorphic curve. Since R × [0,1] is
contractible, we can trivialize u∗TM over the domain of the strip. This gives us two paths in the Lagrange
Grassmanian: `iu

∗∣R×{i}TLi, where i is 0 or 1. We want to connect these two paths up, which will involve
making some choices.
For any two Lagrangian subspaces L,L′ in Cn such that L∩L′ = 0, then there is a unique matrix A ∈ Sp(2n)
such that A(L) = (Rn) and A(L′) = iRn. The canonical short path from L to L′ is λ(t) = A−1(eiπt/2Rn).
Some intuition is that this is the minimal way to map two Lagrangians subspaces to each other in the
clockwise direction.
Returning to our holomorphic strip from p to q, let λp be the canonical short path from TpL0 to TpL1, and
the same for λq. Now consider the loop from TqL0 back to itself in the Lagrange Grassmanian:

−`0 ∗ λp`1 ∗ −λq.

Define the Maslov index of u to be the Maslov index of this loop.

Example 5. Returning to our example of two Lagrangians in the plane.

p q

L1

L0

u

� From p to q, we rotate in the positive direction.

� Taking the short path rotates back in the negative direction the same amount.
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� From q to p rotates in the positive direction

� The short path rotates again in the positive direction

In the end, we will end up going around once, so the Maslov index of this strip is one.

This can be used to give us a grading on the Floer Chain complex, provided we have the following two
conditions:

� 2c1(TM) = 0, which will allow us to take a fiberwise universal cover π ∶ L̃Gr(TM) → LGr(TM).

� For every Lagrangian we consider, we want the Maslov Class µL ∈ H1(L,Z) = Hom(π1(L),Z) to
vanish. The Maslov class is the obstruction to having a lift of L → LGr(TM) to the universal cover
L̃Gr(TM). This is a pretty restrictive condition.

If both of these conditions hold, we can take graded lifts L̃0, L̃1 of the two Lagrangians. At p ∈ L0 ∩ L1,
take a path from TpL̃0 → TpL̃1. This gives a distinguished homotopy class of paths [`p] from TpL0 to TpL1.
Define the degree of p to be

deg(p) ∶= µ(`p ∗ −λp).

Example 6 (Failure of Grading). In this counterexample, both the upper (from p to q) and lower (from q
to p) strips have Maslov index one.

p q

L1

L0

Therefore, we cannot assign a grading to a Floer theory of these two Lagrangians. However, whenever L0

and L1 are oriented, we can create a Z2 grading based on orientation.

So, with these conditions, we have associated to a pair of Lagrangians L1 and L2 a chain complex with
grading given by the Maslov index.

2.4 Recovering the cohomology of L.

Theorem 4. Suppose that L is compact, [ω] ⋅ π2(M,L) = 0, then

HF (L,L) ≃H∗(L,Λ).

12



Example 7. Let’s return to the example of T ∗S1 with the equator Lagrangian.

p

q

L1

L0

There are two intersection points p and q. One can check that both of the strips are index 1 going from p
to q, with opposite orientations. Therefore ∂̄p = ±Tω(u)q + ∓Tω[u]q = 0, so both points end up surviving in
homology. This gives us HF (L,L) ≃H∗(S1).

We can prove the theorem by generalizing the example. Let N be the Lagrangian given by the zero
section of T ∗N . Take f to be a Morse function, and ε a small number. Consider the function

εf ○ π ∶ T ∗N ×R.

Hamiltonian flow is an isotopy from the zero section to a graph of εdf . Since f is Morse, the section εdf
is transverse to the zero section, with intersection points given by the critical points of f . This gives us a
correspondence between the generators of CF ∗(L,L) and C∗(L).
We need a correspondence then between Morse and Floer trajectories. In Morse homology, we need some
gradient trajectory

γ̇(s) = ε∇f(γ(s)),
and in Floer theory, we need

∂u

∂s
+ J(t, u)∂u

∂t
= 0.

The idea of the correspondence is that γ(s) = u(s,0). Now, given small enough ε, or by careful enough choice
of J , we can make this match exactly.
In the other direction, consider the Hamiltonian perturbed equation

∂u

∂s
+ J (∂u

∂t
−XH) = 0

so trajectories are hamiltonian flows that start and end at the zero section. Now given a gradient trajectory
γ(s), we can set u(s, t) = γ(s). Then after proving that the Floer theory is independent of Hamiltonian
isotopy, we would get that Floer theory is isomorphic to the normal cohomology.
How do we deal with the case where N is not given by the zero section? Suppose that there was a holomorphic
disk which goes well outside of a small neighborhood of N , no matter how small the hamiltonian perturbation.
Then Gromov compactness will give you some kind of contradiction.
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2.5 What about when you bound some Disks: Denis Auroux

The running example we want to work with is the circle in the plane.

Definition 7. A Lagrangian L is called monotone if there is a constant K such that for all [u] ∈ π2(M,L),

∫ u∗ω =Kµ(u).

The circle in the plane satisfies this property, as the only disks on this will be k-fold covers of it. Similarly,
the equator on the sphere satisfies this property. Let’s work through an example with the disk.

p

q

L1L0 H

There are 3 holomorphic strips that we can easily see here: one on each of the two sides, and one in the
middle which runs the opposite direction. Let ε be the area of the side parts, and A the area of the center
strip. Then

∂(p) = (T ε − T ε)q = 0

∂(q) = ±TAp.
Here we have a problem. We know HF (L,L) = 0, because we can displace L from itself by Hamiltonian
isotopy. However, we would like to recover the homology of the disk.
The idea is to break area between the Lagrangians into “thin” and “thick” areas. We will look at holomorphic
strips which will have a small amount of area in the ε areas, and a large amount of area in the A in section.

p

q

L1L0 Hε εA

When ε goes to 0, we get honest flow lines from the Hamiltonian H, and the A areas will become disks. This
gives us a mix of flow lines and holomorphic disks. This model is called the pearl homology of L, where you
have

� Critical Points generate the complex

� Trajectories are given by sequences of Morse trajectories and holomorphic disks.

“ A string of Pearls”
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When we use Novikov coefficients, we can filter the complex by energy; because we are in the monotone case,
we can filter by the Maslov index. One defines the index by combining

ind(u) = Morse index of ∇f part + Sum of Maslov Index of Disk Part.

It can be shown that the Floer index splits as

∂Floer = ∂0 + ∂2 + . . .

where ∂k is given by Floer trajectories of Maslov index k.
We now have a filtered chain complex, so that CF ≃ CMorse(f). Then there is a spectral sequence, where
the E0 page is given by the Morse homology, and converging the HF ∗(L,L). This is called the Oh spectral
sequence.
What this morally means is to compute the Floer cohomology in the monotone case is to start by taking the
Morse homology, and then look at higher differentials.

Example 8. So, for S1, we have on the first page

∂0 p q0

and on the second page

∂2 p q
1

so the spectral sequence cancels to zero.
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3 The Lagrangian PSS Morphism: Ben Filippenko

The primary source for this talk is [Alb08]. The letters PSS stand for Piunikhin-Salamon-Schwarz.
Let (M,ω) be a closed symplectic manifold of dimension 2n, and L a closed, monotone Lagrangian. Let
Ht(x) be a time dependent Hamiltonian, and φH be its time one flow.

Definition 8 (Minimal Maslov Number). The minimal Maslov number of a Lagrangian L is the positive
generator of the subgroup µMas(π2(M,L)) ⊂ Z.

Suppose additionally that L has minimal Maslov number NL greater than or equal 2. This means that
we are allowing some nontrivial holomorphic disks, but still managing to exclude the ones that will mess up
our argument.

Theorem 5. Given L and NL as above, there are maps

PSS ∶HFn−k(L,φH(L)) →Hn−k(L;Z/2) ∣ k ≤ NL − 2,

and
SSP ∶Hn−k(L) →HFn−k(L,φH(L)) ∣ k ≥ n − (NL − 2)

such that when they both are defined they are inverse isomorphism. When NL ≥ n+2, we get that HF ∗(L,φL(L))
is isomorphic to H∗(L,Z/2).

To prove this theorem, we will use a slightly different interpretation of HF ∗.

� In our set-up, we will generate HF ∗ by chords

PL(H) ∶= {x ∶ [0,1] →M ∣ (∗)}

where (∗) is the conditions

– That the x is a hamiltonian flow

– x(0), x(1) ∈ L
– [x] = 0 ∈ π1(M,L).

� Let J be a appropriately chosen compatible almost complex structure. Given two generators x, y ∈
PL(H), define

M̂L(x, y) ∶= {u ∶ R × [0,1] →M ∣ (∗∗)}
where (∗∗) are the conditions of satisfying the hamiltonian perturbed Cauchy-Riemann equation

∂su + J(∂tu −XH) = 0

with finite energy, and boundaries defined by this diagram:

L

x y

L

u

The space M̃L(x, y) comes with a natural R action. Define ML(x, y) to be the orbits under this R
action, and let ML(x, y)[d] be the union of its d-dimensional components.
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� The Floer differential is defined by the count

⟨∂y, x⟩ = #ML(x, y)[0]

We work over Z/2 coefficients. The grading is given by

dimML(x, y) = µ(x, y) ∶= µmas(u) ∈ Z/NLZ

Notice that our grading is only defined up to ModNL. Later, we will fix x0 ∈ PL(H) and set the degree
of x0 to be n, and the degree of any other element to be given by the relative Maslov index.

3.1 Construction of PSS

Fix f ∶ L → R a Morse function, and g a Riemannian metric on L such that (f, g) is Morse-Smale. Recall
that the Morse complex Cmorse∗ (L) is generated by Crit(f), the set of critical points of f . Since we know
that Cmorse∗ (L) is isomorphic to singular cohomology of L, we will show that CF (L,L) is quasi-isomorphic
to Cmorse∗ (L).
This isomorphism will be constructed by counting the space MPSS(q, x) of flows of the form:

q

negative Grad flow

xJ F

L

L .

Here, the labelling J means that the strip statisfies the Cauchy-Riemann equation , and F means satisfies the
Hamiltonian perturbed holomorphic equation . The other labels give us the appropriate boundary conditions
of the flow.
More specifically, define MPSS(M,x) to be equations u ∶ R→ [0,1] satisfying

� ∂su + J∂t(ρ(s)XH(t, u)) where ρ is some smooth interpolation from 0 to 1.

� E(u) < +∞

� u(+∞, t) = x(t)

� u(s,0), u(s,1) ∈ L.

Each flow in this space comes with left endpoint, which defines an evaluation map on the moduli space of
flows:

ev ∶ Mpss(M,x) →L
u↦u(s = −∞)

By our setup, dim(MPSS(M,x)) ≅ n − deg(x)Mod(NL).
We would like to match the space of PSS flows to the semi-infinite spaces of Morse and Floer flows. Define
the semi-infinite Morse moduli space,

Mmorse(q,L) ∶= {γ ∶ (−∞,0] → L ∣ (⋆)}

where the condition (⋆) is that γ is a gradient flow line satisfying γ(−∞) = q.
This space comes with an evaluation map ev ∶ Mmorse → L which is a homeomorphism to the unstable
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manifold of q.
We can then define MPSS(q, x) to be the fiber product over the evaluation maps of MMorse(q,L) and
MPSS(M,x). This gives the following dimensionality result:

dim(MPSS(q, x)) =dimMmorse(q,L) + dimMpss(M,x) − n
=∣q∣ − deg(x)ModNL

Theorem 6 (Compactness Results for PSS). For d < NL, MPSS
[d] (M,x) admits a compactification by adding

broken strips as boundary pieces.

Proof. First, let’s show that the requirement of energy bound exists on the holomorphic curve portions of
our moduli space. Let u, v ∈ Mpss

[d] (M,x). Then

0 =d − d
= ind(u) − ind(v)
=µmas(u − v)

Where u − v is the disk that first runs from a point along u to the chord x,then along v from the chord to a
different point. By monotonicity, we can relate the Maslov index to the energy by a constant λ.

=λ(E(u) −E(v))

We get a uniform energy bound on Mpss
[d] (M,x). Gromov-compactness tells us that a subsequence (un) ∈

Mpss(M,x) converges to a bubble tree of the form

⋯u∞ Si

Di

F1 F2 Fk

where Fi are bubbling of strips, Si are possible sphere bubbles, and Di are possible disk bubbles trees. Since
we know that the index of the components of the bubble tree add to the index of the un,

d = ind(un)
= ind(u∞) +∑ ind(di) +∑2c1(si) +∑ ind(Fi)

Since every disk bubble is a nonconstant map, we know that the indexes of the spheres and disks are greater
that NL. Our assumptions then cancel out all the NL, as it was assumed that d < NL.

= ind(u∞) +∑ ind(Fi).

We therefore forbid the bubbling of disk and sphere like components in the desired component of the moduli
space. b

Corollary 1. If d−∣q∣+n < NL, thenMpss
[d] (q, x) admits a compactification by broken Morse-Floer trajectories.
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If d = 1, then we have an identification by gluing:

∂Mpss
[1] (q, x) =

⎛
⎝ ⋃
p∈Crit(f),∣p∣=∣q∣−1

Mmorse(q, p) ×Mpss
[0] (p, x)

⎞
⎠
⊔
⎛
⎝ ⋃
y∈PL(H)

Mpss
[0] (q, y) ×ML(y, x)[0].

⎞
⎠

where the two parts designate when these break. This includes the statements that the zero dimensional
components are compact, without adding anything.

Corollary 2. The PSS map ⟨PSS(x), q⟩ = #Mpss
[0] (q, x) is well defined, and is a chain map.

The proof that this is well defined is the compactification argument before. To show that this is a chain
map, we need to show that ∂PSS(q) = PSS∂(q). This equality comes from the relation

⟨∂ ○ PSS(q) − PSS ○ ∂(q), x⟩ = #∂Mpss
[ 1](q, x).

3.2 Proof that PSS ○ PSS is homotopic to identity.

For x, y ∈ PL(X), consider the moduli space MS2P 2S2(x, y) of configurations that look like

F J J F yx

The dimension is given by µ(y, x)+ 1 mod Nl. The 1-dimensional component admit a compactification with
boundary with flows of these forms:

� The length of the Morse trajectory goes to zero, corresponding to a map η ∶ CF → CF .

F J J F yx

� The Morse flow breaks in the middle, giving us SSP ○ PSS.

F J J F yx q

� The Floer trajectory breaks at either end: ∂F ○ θ − θ ○ ∂F .

F F J J F yx
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which gives us that SSP ○ PSS − η is nullhomotopic. So we need to show that η is the identity on HF .

Proof. Consider the moduli space of things that look like

F
J

Fx y
r

It can be compactified with boundary in several ways.

� If R goes to infinity, we get exactly the count η.

F J J F yx

� If R → 0, we get Floer trajectories from x to y. The 0 dimensional component is empty if x ≠ 0, and
consists of a single point if x = y, which is the constant Floer trajectory at x.

So counting these configurations gives us the identity. The other trajectories are Floer breaking on either
side, which is ∂F ○ θ̃ − θ̃ ○ ∂F . But ∂F − θ̃ − θ̃∂F = η − id.
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4 Products in Lagrangian Floer Theory: Morgan Weiler

There are a lot of algebraic structures on the set of intersection points on Lagrangians, and today we’re
going to outline them. Specifically, we will develop the products µk and the A∞ relations in Floer theory.
Given k + 1 Lagrangians, the goal today is to give the maps

µk ∶ CF (Lk−1, Lk) ⊗⋯⊗CF (L0, L − 1) → CF (L0, Lk)

which is defined by sending points p1, . . . , pk to the counts of holomorphic polygons with boundaries lying
on the Lagrangians and corners corresponding to the intersection points.
The geometry of these maps will give us an algebra. The operation µ1 will correspond to the Floer differential.
Here’s an outline for the talk:

1. We will first define the product µ2, (which we will sometimes write as a product of elements.) We will
show that µ2 satisfies the Leibniz rule with respect to the Floer differential and sketch the necessary
perturbations we need to define this product.

2. We will then develop µk, along with the necessary perturbation data needed to define these products.
We will show that these higher products satisfy the A∞ relations, which are like a higher-dimensional
Leibniz rule.

3. We will put these products together to outline the construction of the Fukaya category.

4.1 µ2, the product

This is a map µ2 ∶ CF (L1, L2) ⊗ CF (L0, L1) → CF (L0, L2). Given p1 ∈ CF (L1, L2) and p2 ∈ CF (L0, L1),
the coefficient ⟨µ2(p1, p2), p3⟩ is given by counts of holomorphic disks of the following configuration:

p1 p3

p2

L1

L2

L3

µ2
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For us, it will be useful to think of the domain of this holomorphic disk as a “disk with strip-like ends”,

L2

L1

L3µ2p1

p3

p2

with boundaries as drawn below. This can be given by the count of points in the moduli space

M(p1, p2, q; [u], J)

which is the set of maps u ∶D →M such that

� u is J holomorphic with finite energy

� u has boundary conditions set up by the Li as in the diagram

� The boundary punctures to the points pi and q,

� u is in the homotopy class [u].

Remark 1. The automorphism group of D2 is given by the image of 3 distinct boundary points, so we don’t
need to quotient this moduli-space to get unparameterized maps.

Assume that we can define Z grading on the intersections. The index of a map u will be given by the Maslov
index of the boundary components of the path u, combined with the canonical short paths. Given grading
on the Floer theory,

deg(q) − deg(p1) − deg(p2) =Maslov Index(TqL0 → TqL2 − λq)
−Maslov Index(Tp1L0 → Tp1L1 − λp1)
−Maslov Index(Tp2L1 → Tp1L2 − λp2)

which (assuming some additional conditions) shows that

ind(u) = deg(q) − deg(p1) − deg(p2).

Assuming transversality conditions for these moduli spaces, we define

µ2(p2, p1) = ∑
q∈L0∩L2

[u]∶ind(u)=0

#M(p1, p2, q; [u], J)Tω[u]q

We will sometimes denote this as p2 ⋅ p1.

Proposition 1 (Liebniz Rule for Floer Product). If [ω] ⋅ π2(M,Li) = 0 for all i, then

∂(p2 ⋅ p1) = ±∂p2 ⋅ p1 ± p2 ⋅ ∂p1.
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This means that the product is well defined on HF , and that this is associative on the level of cohomology.

Proof. We will look at the compactification of the moduli space of index 1 curves. If ind(u) = 1, then

M(p1, p2, q; [u], J)

is a smooth 1-manifold which admits a compactification by adding broken curves. (We don’t need to worry
about bubbles.)
Because of transversality, we have no curves of index less than 0, and there are no nonconstant strips of
index < 1. If ui is a family of index 1 strips going to something broken, then sum of the index of the limit
components should be equal to 1. Here are the possible breakings;

p1 p3

p2

L1

L2

L3

µ2

p1

p3

p2

L1

L2

L2

L1 L3

µ2
p1 p3

p2

L1

L2

L3

L1

L3

µ2
p1

p3

p2

L1

L2

L3

L2

L3

µ2

These three configurations correspond to the three terms in the Leibniz rule. A gluing argument shows that
boundary of µ(p1, p2, q; [u], J) gives us all 3 configurations. In order get this to work out, we will need to
perturb these Lagrangians and pick J and H to get the same partial differential equation on all components.
This is similar to setting up HF (L,L), but we need to be a bit more careful. We study the PDE

(du −X)H ⊗ β)0,1
J = 0

where β = dt near the punctures of the holomorphic disk. This is tricky, as the perturbation data needs to
be close to the perturbation chosen to define the Floer complex.

4.2 µk and A∞-relations

We now define a map

µk ∶ CF (Lk−1, Lk) ⊗⋯⊗CF (L0, L − 1) → CF (L0, Lk)
The moduli space we now consider is M(p1, . . . pn, q; [u], J), which is the space of J-holomorphic n

punctured disks D →M which extend continuously to the closed disk, with boundaries on the Lagrangians,
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punctures at the intersection, in the class u and finite energy. We then quotient by the automorphism group
of D2. With the appropriate transversality condition, the dimension of the moduli space is k + 1− 3+ ind(u)
, where the −3 comes from the action of the automorphism group.
Now, we say that

µk(p1, . . . pk) = ∑
q∈L0∩Lk

[u]∶ind(u)=2−k

#M(p1, . . . , pk, q[u], J)Tω([u])q

Notice the funny looking negative index here. This will turn out to be ok, because we are parameterized by
k marked points. This means that our new setup for the moduli space is the zero section of a section over
the space M0,k+1 × TuC∞(D,M).
The space M0,k+1 is compactified by the Stasheff Associahedron. Here are a couple of them.

Example 9 (M0,4). Given 4 ordered points on the boundary of the disk, there are 2 ways for it to break.
First, fix the position of any 3 of the points. The final last point can drift to either the left or the right,
resulting in bubbling. This gives the boundary configurations of this moduli space.

p1

p2

p3

x

p1

p2

x

p3

p2 x

p1 p3

M0,4

so M0,4 is an interval.

By keeping track of bubbling at the boundary, we can show that M0,5 is a pentagon. The reason to
introduce the associahedron is to notice that our degenerations of holomorphic polygons will involve the
boundary strata of the associahedron.

Proposition 2 (A∞ relations for the Fukaya Category). If [ω] ⋅ π2(M,Li) = 0 for all i, we get the A∞

relations,
k

∑
l=1

k−1

∑
j=0

(−1)♣µk+1−l(pk, . . . pj+l+1, µ
l(pj+l, . . . pj+1), pj , . . . , p1) = 0

where ♣ = j + deg(p1) +⋯deg(pj).

Reduction to the previous cases gives us

� k = 1, ∂2 = 0.

� k = 2, Leibniz Rule

� k = 3, µ2 is associative on homology.

4.3 Fukaya Category

Let (M,ω) be a nice symplectic manifold. Then we can associate a A∞ category to this data with

� Objects given by Lagrangian submanifolds, with perturbation data,

� hom(L0, L1) is given by CF (L,L1).

� Composition is given by µ2, which is associative up to homotopy.
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� We have higher compositions µk satisfying the A∞ relations.

Notice to set all of this up we would need to take perturbations. A choice of perturbations give us quasi-
equivalent Fukaya-categories. Say that we wanted to get an actual category . Then we could work over the
homology instead, but we would lose some of the data of higher product.
By dropping some of condition of “nice”, we just make this category complicated. If [ω] ⋅ π2 ≠ 0, we get µ0

L,
which allows us to modify A∞ relations.
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5 Exact Triangles and Generators: Denis Auroux

This is going to be one piece of the A∞ language we need to move on before making actual computations.
While in the case of the two tori we were able to understand the Fukaya category by explicitly looking at every
Lagrangian and computing, it is currently beyond our abilities to classify the Lagrangian submanifolds3 So,
we would like to determine the structure of F(X) by studying only certain Lagrangians. There are various
challenges:

� First, how do we know when these determine the structure of the category. This is covered in this talk.

� So, when might we have enough Lagrangians to get some data on all of them. This will be covered in
6

� We will also need to know the structure of all of the higher products for a Lagrangian. We will show
how to recover this from the data of finitely many products in 7

5.1 Mapping Cones/ Exact Triangles

In other categories, you might try to understand the structure of the whole category by reducing to some
set of irreducible objects. For instance, if you were studying modules, you might notice that for every map
between modules you have a kernel of the map, which is again a module. This process gives you a method
for decomposing modules into irreducible modules.
In the Fukaya category, you have hom-sets which are given by Floer chain complexes. This is good for us
geometrically, bit it is unclear how to we should construct the kernel of a morphism. While we do not have
access to kernels or cokernels (and therefore cannot define exact sequences, ) we can still hopefully put the
structure of a triangulated category on Fuk(X), which will give us access to tools similar to exact sequences.

Definition 9. Given A,B,C three graded objects, an exact triangle is a collection of morphisms between
them

A B

C

f

g
h[1]

which for every object T , we get the long exact sequence

⋯Hi hom(T,A) fÐ→Hi hom(T,B) gÐ→Hi hom(T,C) h[1]ÐÐ→ ⋯

One reason to hope for the structure of a triangulated category is because the B model of coherent
sheaves is a triangulated category. As mirror symmetry predicts that the Fukaya category should be derived
equivalent to the category of coherent sheaves, we expect some structure equivalent to triangulation to exist
on the A-model side.

Example 10 (Coherent Sheaves). In the category of coherent sheaves, a short exact sequence

0→ E → F → G → 0

gives a long exact sequence via Ext.

Even if a category C is not additive, it is possible to define “triangle-like” structures on the category. We
can draw intuition for what this structure should look like from topology.

3 One piece of recent news is that we may know the Lagrangian tori in R4, which shows us how little we know.
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Example 11 (Cones in Topology). In the category of cell complexes, given a map f ∶X → Y , you can create
a new object, the cone of f

Cone(f) ∶= (X × [0,1]/X × 0) ∪(x,1)∼f(x) Y

The cone of f fits into the suspension of X, which is a “shift” of cellular homology. This induces a long
exact sequence on the cohomology of the spaces.

We can use this topological intuition from cones to define similar constructions in homological algebra.

Definition 10 (Cone of a complex). Given two chain complexes M● and N● and a chain map f ∶M● → N●,
the cone of f is a new chain complex 4

cone(f) ∶= (M i+1 ⊕N i, d = (−d
i+1
M 0

−f i+1 diN
)) .

5.1.1 Triangles in A∞ categories

We can upgrade this construction to work for dg modules and A∞ categories.

Remark 2. We drop signs from our A∞ equations from here on!

Definition 11. A differential graded module over an dg algebra A is a

A⊗M →M

with the differential interacting with multiplication by the Leibniz rule

d(a ⋅m) = da ⋅m ± a ⋅ dm

satisfying the associativity equation.
A A∞-module over an A∞ algebra comes with map

µk∣1 ∶ A⊗k ⊗M →M[1 − k]

such that for k ≥ 0,

∑µ(an, . . . , µ(. . .), . . . ,m) + µ(⋯, µ(⋯,m)) = 0

with appropriate signs.

The dg-relation is relatedA∞ structure as (a1a2)m is up to homotopy µ2∣1(da1, a2,m)+⋯±dµ2∣1(a1, a2,m).

Definition 12 (Morphism of A∞ modules). Let M,N be A∞ modules. morphism of A∞ modules is a
collection of maps fk∣1 ∶ A⊗k ⊗M → N[−k] satisfying

∑µ(⋯f(⋯)⋯) + f(⋯µ(⋯)⋯)) = 0

If you have an A∞ morphism of modules, you can construct a A∞ mapping cones as well.

Definition 13. Given f ∈ hom(M,N) an A∞ morphism, the cone of f is given by

Cone(f)i =M i+1 ⊕N i

where the multiplication maps are given by

µ
k∣1
C ∶= (µ

k∣1
M 0

fk∣1 µ
k∣1
N

) .

One can check if f is an A∞ module homomorphism, this construction gives a valid A∞ structure on the
cone.

4Your actual signs may vary, depending on who you are.
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5.2 Mapping Cones in the Fukaya Category

We would like to know if the Fukaya Category has mapping cones in it. One strategy will be to enlarge the
Fukaya category to its triangulated envelope, and see if we can relate the triangles in this enlargement to
triangles in the original category.

� In the good case, this enlargement is not much bigger.

� In the bad case, we now have a nicer category to work with.

When we talk about homological mirror symmetry, the derived categories are really based on these enlarge-
ments, so enlarging categories does not cost us too much for doing homological mirror symmetry.

Definition 14. A category or A∞ category is triangulated if every closed morphism has a mapping cone.

This is equivalent to saying that it sits in an exact trainable. We will look at two different constructions
to add in exact triangles.

5.2.1 Mod − C categories.

Given C an A∞ category, there is category of Mod − C (dg category of A∞-modules) which is triangulated.

Definition 15 (Left C modules). Let C be an A∞ category. The category of Mod − C, has

� Objects of the form M ∈Mod−C. This is a collection where for all objects c ∈ C, we have Mc a chain
complex. It also is equipped with module structure maps hom(ck+1, ck)⊗hom(c1, c1)⊗Mc0 →MCk[1−k].

� Morphisms that we will not detail here.

This new category is itself an A∞ category.

There is a natural Yoneda A∞-functor from C → Mod − C. On objects, the Yonina embedding maps
X ↦ X , where Xc ∶= hom(X, c) for every other object c. The structure maps are µk∣1 ∶= µk+1.
Similarly, there is a way to turn a A∞ morphism into a Mod−C morphism, and this gives you a contravariant
A∞ functor.
This is a much larger category, and the Yonina embedding is fully faithful. Fortunately, the things that
we’ve added in are the mapping cones that we need. Unfortunately, we add in a bunch of more things.
Given f ∶ A → B in C we can create an exact triangle A ← B ← cone(f) ← A, in Mod − C. We say that
A→ B → C is an exact triangle in C if the image under Yonina fits into the following triangle

C

A B

cone(f)

Quasi-isomorphism
f

Usually you need to check that mapping cones satisfy a bunch of axioms. The A∞ structure automatically
gives us these axioms.

5.2.2 Twisted Complexes

Unfortunately, the Mod − C construction is too big. There is a milder operation called twisted complexes
which we can use to enlarge the Fukaya category.

Definition 16. A object (E, δE) in the twisted category Tw(C) is
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� E is a formal direct sum

E ∶=
N

⊕
i=1

Ei[ki]

where Ei ∈ Ob(C), and ki ∈ Z

� The differential δE is a upper triangle collection δijE ∶ Ei[k] → Ej[k − 1] of degree 1 maps satisfying

∑
k≥1

±µk(δ,⋯, δ) = 0.

Example 12 (Turning Chain Complex into Twisted Complex). Given a chain complex E1
d12ÐÐ→ E2

d23ÐÐ→ E3.
We want µ1(d12) = 0, and µ1(d23) = 0. But we allow ourselves more flexibility by allowing µ2(d23, d12) =
µ1(d13). In the case of chain complexes, this ends up being zero (as d13 = 0, ) but in the A∞ case we’ve
relaxed the condition.

A morphism of twisted complexes is matrix ⊕i,j hom(Ei, Fj). Now

µ1
Tw(f) = ∑µ(δF , . . . δF , f, δE , . . . , δE).

You are a chain map if you are closed under µ1
Tw. We similarly want to check µ3

Tw and so on.

µfk,...,f1Tw = ∑µ(δ,⋯, δ, fk, δ⋯, δfk−1, . . . , . . . , δ, . . . , δf1, δ, . . . , δ).

We can now introduce the structure of a mapping cone into the twisted complex. Suppose that µ1(f) = 0.

Then we define the cone of f to be the twisted complex {A fÐ→ B}. So, every twisted complex is iteratively a
mapping cone of some kind. This means that the category of twisted complexes is the smallest way to add
in all the possible mapping cones.
The way that we detect if we have an exact triangle A → B → C in C is if C is quasi-isomorphic to the

mapping cone {A fÐ→ B}.

Remark 3. There is something a bit funny about exact triangles in A∞ categories. Assume that µ2(g, f) = 0,
µ2(f, h) = 0 and µ2(h, g) = 0 in an exact triangle. Then we have maps between C and the twisted cone by

C
hÐ→ {A→ B} gÐ→ C.

Now, µ2
Tw = µ3(g, f, h) = id, and so these maps are not just quasi-isomorphism, and are in fact isomorphism.

When things compose to 0 on the chain level, then µ3 detects that you have an exact triangle.

5.3 Generators

We say that G1,⋯Gn ∈ ob(C) generate C if every object of C is quasi-isomorphic in Tw(C) to a twisted
complex built from copies of the Gi.
If we were to wok in Mod−C, then we would take iterated mapping cones. This means that we can compute
all the morphisms between objects purely in terms of the generators. Then it is enough to understand

G ∶=⊕
i,j

hom(Gi,Gj).

Unfortunately, even if you don’t care about the higher products on the Fukaya category, you’ll need to
understand the A∞ algebra on G to recover even homology of the Fukaya category. Then Yonina gives you

C ↪Mod − G.
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For us, we work with split generators. We then require that every object C is a direct summand in an
iterated mapping cone. We get the same conclusion. Returning to our example of T 2. The longitudinal and
latitudinal Lagrangians of the torus will only split generate Fuk(T 2).

α

β

T 2

In order to have a generating family the Fukaya category, we need to include all of the translates of α.

α

β

T 2
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6 Lagrangian Surgery: Kuan-Ying Fang

The goal of this talk is to describe Lagrangian surgery, a technique for producing the mapping cone of
a morphism between two Lagrangians. Recall that a morphism between two Lagrangians is given by an
intersection point of those two Lagrangians; in this talk we will be working in the simplest cases, where
things intersect transversely at one point.
Let (X,ω) be a symplectic manifold, and L1, L2 are Lagrangians which intersect transversely at a point p12.
We’ll locally first locally describe how we would to do Lagrangian surgery on this. In the symplectic vector
space setting, the group Sp(2n) acts transitively on pairs of transversely intersecting Lagrangian subspaces.
We can identify the points in each Lagrangian subspace as the “real” points or the “purely imaginary” parts.
Upgrading to the manifold setting, by Darboux’s theorem, there is a neighborhood U containing p12 such
sending the first Lagrangian submanifold to the real part of Cn, and the second Lagrangian submanifold to
the purely imaginary subspace of Rn. Let

fε ∶ Rn ∖ {0} →R
x↦ε log ∣x∣

and consider Hε, the graph of dfε. In T ∗(Rn ∖ 0}) ≃ C ∖ iRn, the submanifold Hε is a Lagrangian.
Now, let’s write dfε = ε

∣x∣2 ∑xidxi. Then

∣x∣ → 0 HεiRn

∣x∣ → ∞ Hε → iRn

This estimate shows that Hε rapidly approaches the imaginary and real subspaces, which are suppose to be
the images of our Lagrangians in our construction. ε dictates how close you are to the axis.

L1

L2

in local coordinates. By slightly modifying fε, we can make Hε land on the real and imaginary subspace
exactly. Our intuition for the lagrangian surgery of L1 and L2 is to modify them in these local coordinates
by “swapping” in the graph Hε for the intersection point. This means that we are taking an intersection
point, and replacing it by breaking it into a neck. This is operation is called Lagrangian direct sum

L1#εL2
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L1p12

L2

Lagrangian connect sum is a non-commutative operation in this setup. The width of the neck is determined
by constant ε picked.

6.1 Properties of L1#L2.

We now have a geometric description of L1#εL2, now we will be interested in what object it represents in
the Fukaya category. Let L0 be some test Lagrangian, which intersects both L1 and L2. Then we can draw
a geometric relation between triple products of L0, L1, L2 and differentials in hom(L1#p12L2, L0) in set-up
below.

L1

L2

L0

r

q
p

L1

L2

L0

r

q

The intuition from [FOOO00], is that for every holomorphic disk representing a µ3 operation with boundaries
and intersections p, q and r, we have a disk between q and r.

r

q

p

L0

L2

L1

r

q

L0 L1#εL2
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Let’s phrase this geometric intuition algebraically in order to construct a mapping cone. Fuk(X) is an A∞
category, with objects L1, L2 and p12 ∈ hom(L2, L1). Since we’ve assumed that L1 and L2 intersect at only
one point, we know that µ1(p12) = 0. In the module category, we will build a new object, called cone at p12

(which we will denote C for this discussion.) Recall, a A∞ module is a chain complex associated to each
object of Fuk(X). We’ll define the cone C by the relation

C(L0) = hom(L1, L2)[1] ⊕ hom(L0, L1).

with multiplication maps defined by

µdmod((b2, b1), ad−1, . . . , a1) =µdA(b2, ad−1, . . . , a1), µdA(b1, ad−1, . . . , a1) + µd+1
A (p12, b2, ad−1, . . . a1)

For example,
µ1
mod(b2, b1) = µ1

A(b2), µ1
A(b1) + µ2(p12, b2).

What this means if that if you had a holomorphic strip entirely between L0 and L2, then the strip will still
survive in the connect sum. This is why the µ1 terms coming from L1 and L2 are still in this cone. However,
whenever we had a µ2 term coming from p12, we will get a µ1 contribution in the mapping cone.

Remark 4. The order of L1 and L2 is important; not all holomorphic triangles will be smoothed to strips
(depending on how the are oriented with the neck. )

L1

L2

L0

r

q

This will not smooth

This is giving us an algebraic object in the module category (but we don’t know that this should neces-
sarily be the same as the object L1#εL2.

Theorem 7. In dimension 2n ≥ 4, C, the mapping cone of p12 ∈ hom(L2, L1), is representable by the object
L1#εL2 of Fuk(X).

The proof of this is very technical, but we will (literally) sketch the proof out. This is the missing chapter
from [FOOO00],changing Lagrangians.

Sketch of Proof.
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Theorem 8 (Implicit Function theorem). Let X,Y be a Banach spaces, and U ⊂X open. Let f ∶ U → Y be
continuously differentiable, and let x0 ∈ U such that

D = df(x0) ∶X → Y

is surjective with bounded right inverse Q. Choose δ, c two constants. Suppose that x1 ∈X satisfies

∥f(x1)∥ <
δ

4c
∥x1 − x0∥ <

δ

8
.

Then there exist unique x ∈X such that f(x) = 0, x − x1 ∈ 1mQ, and ∥x − x0∥ ≤ δ.
We should think of c being the norm of Q.

In our case we are talking about holomorphic maps u ∶ Σ→M . For this situation,

X =W 1,(Σ, u∗TM)
Y =Lp(Σ,Λ0,1 ⊗ u∗TM)

Then the function we will be analyzing is

Fu ∶X →Y
ξ ↦∂̄J exp

and x0 = 0, and dFu(0) = Du, the linearized operator. The application of the implicit function theorem
states that whenever we can find some function which makes the value of ∂̄ small, then there is a unique
thing which actually minimizes this, an actual pseudoholomorphic disk.
We’ll use this to transform the disks bounded by L0, L1 and L2 into disks of L0 and L1#εL2. Here are the
steps that we take:

� Take the disks, and “preglue” them to things which are not pseudoholomorphic disks, but are probably
very close.

� Check Du is surjective with bounded right inverse

� ∂̄ is small

� The implicit function theorem will then give us an honest pseudoholomorphic disk u.

So, the implicit function , in good cases, gives us way of converting things which are not pseudoholomor-
phic, and getting things which are pseudoholomorphic. Notice that the pregluings will never actually be
pseudoholomorphic by analytic continuation theorems. In our case, the pregluing maps will look like this:

q p r

Hε L0 L1 L2 L0

upper half plane model of the triangleupper half place model for rounded corner

replace this section by Hε model

Remark 5. Notice that the size of these disks is slightly different. Therefore, the mapping cone determined
by L0#εL1, really is tε related to the original mapping cone, where t is the Novikov parameter.
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7 Hochschild Cohomology and A∞: Jeff Hicks

Here’s the general strategy of what we would like to do.

� From the previous two talks, we have some hope of understanding the triangulated envelope of the
Fukaya category by instead understanding the A∞ relations on a set of generators. The plus side is
that we need only understand the structure of a few Lagrangians. The downside is that understand
even small products on arbitrary Lagrangians, we need to know the full A∞ structure of the generators.

� There is a way to simplify the Fukaya category. Suppose L1, . . . , Lk is some set of Lagrangians in
(X,ω), which bound a holomorphic polygon u contributing to some higher product in the Fukaya
category of some surface. I can remove the count of this polygon (and in some ways simplify my
Fukaya category) by putting a puncture in the surface exactly through where the polygon lived.

� More generally, given some divisor D ⊂X, we may be able to compute Fuk(X ∖D). Seidel’s approach
to proving Mirror symmetry outlined in [Sei02] is to show that Fuk(X ∖D) and Fuk(X) can be related
by deformations of a certain kind.

� Summarizing:

Simple A∞ category A Complicated A∞ category
Extend by deformation

In good cases, we can show that the deformations of algebraic objects is classified by an object called
the Hochschild homology. Namely, to a dg-category A, we will associate a bigraded homology theory
called the Hochschild Group

HHk(A)j

and show thatA∞S(A), the set ofA∞ structures onA is determined (up to homotopy) by a deformation
class.

7.1 Deformation of Algebras

My notes for this section were based on [Vor].

Definition 17. Let A be an algebra over k. A formal deformation of A is a k[[t]] bilinear multiplication
law:

mt ∶ A[[t]] ⊗k[[t]] A[[t]] → A[[t]]
where m0(a, b) is the original multiplication on a, and mt is associative. 5

Generally, we will write the multiplication law as a power series:

mt(a, b) =
∞
∑
k=0

tkmk(a, b).

Given an algebra A, we would like to know what kind of deformations it admits. One way to do this is to
find deformations to kth degree, where we require associativity when we set tk+1 = 0.

Example 13. What kind of deformations are there to first degree? Then our power series is truncated as:

mt(a, b) =m0(a, b) + tm1(a, b).
5This is not to be confused with the A∞ multiplication index... yet.
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Associativity of this equation is reduced to showing that

0 =mt(mt(a, b), c) −mt(a,mt(b, c))
=m0(m0(a, b) + tm1(a, b), c)) + tm1(m0(a, b) + tm1(a, b), c))
−m0(a,m0(b, c) + tm1(b, c)) − tm1(a,m0(b, c) + tm1(b, c))

As t2 = 0 and m0 is already associative

=t(m0(m1(a, b), c) +m1(m0(a, b), c) −m0(a,m1(b, c)) −m1(a,m0(b, c))

Satisfying this equation is enough to be a first order deformation.
One example of a first order deformation is given by derivations. Given any map φ ∶ A → A, we can define
the associated derivation as

mφ(a, b) =m0(φ(a), b)) −m0(b, φ(a)).
By the magic of plus and minus signs, m0 + tmφ is a first order deformation of A.

Notice that being a first order deformation does not in any way guarantee that you extend to an actual
deformation of the algebra.

Question 1 (Motivating Question). When can we extend a first order deformation to a deformation?

Since we have an object whose kernel is first order deformations, and the image of a different object
which may be “boring” first order deformations, it is natural to set up a cohomology theory which classifies
these.

Definition 18. Let A be a k algebra. The Hochschild complex C●(A,A) has

� As chain groups Ck(A,A) ∶= hom(A⊗n,A).

� The differential is defined by

(df)(a0,⋯, an) =a0f(a1, . . . , an)+
∑
i=0

(−1)i+1f(a0, . . . , aiai+1, . . . an)

+ (−1)n+1f(a0, . . . , an−1)an.

The cohomology of this theory is the Hochschild cohomology.

Claim 1. H1(A,A) classifies derivations on A up to inner derivations (which are given by multiplication
by an element. )

Claim 2. H2(A,A) classifies first order deformations of A up to derivations.

The Hochschild cohomology is actually an algebra, equipped with the Gerstenhaber bracket

[−,−] ∶ Cm(A,A) ⊗Cn(A,A) →Cm+n−1(A,A)
[f, g](a0,⋯, am+n−1) =∑

k

±f(a0, . . . , ak, g(ak+1, ak+n), . . . an)

−∑
j

±g(a0, . . . , ak, f(ak+1, ak+n), . . . an)

where I have dropped signs. Importantly, one can check that if we force f and g to commute with t, then
the associativity equations become

[mt,mt] = 0.
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and we can write
df = [f,m0]

where m0 is the algebra multiplication. Expanding out [mt,mt] = 0, we get the following term by term
expansion:

[m0,m0] =0

2dm1 =0

2dm2 + [m1,m1] =0

and so on. In particular, the obstruction to finding an m2 extending the first order deformation m1 is
dependent on the exactness of [m1,m1]. This means that H3(A,A) = 0, we can always extend to a second
order deformation.
A send note is that our differential can be represented with the Gerstenhaber Bracket as

df = [m0, f].

Theorem 9 (Hochschild-Extension). Suppose that HHk(A) vanishes for k = 3. Then HH2(A) parameter-
izes deformations of the algebra.

Remark 6. This should look suspiciously similar to language used to do things like construct deformations
of complex structures by using the Kodaira Spencer map, etcetera.

7.2 A∞ Category

My notes for this section are based on [AAEKO13]. Recall, an A∞ category is a collection of objects
Li ∈ Ob(A) and for each pair of objects, a graded space K-module

A(Li, Lj)

along with k-multilinear composition maps

mk ∈ hom2−k
K (

k−1

⊗
0=1

A(Li, Li+1),A(Lk, L0)

satisfying the A∞ relations:

∑
i+j+k=l

±ml(id⊗i⊗mj ⊗ id⊗k) = 0

Here, I have not specified the range of k. If k ≥ 1, then we get a A∞ category. If k ≥ 0, we get a curved A∞
category.
Let us reduce to the case when A is just a category. There are two questions that might interest us.

� When can we add in higher morphisms to A making it a A∞ category.

� What are the deformations of the category structure on A.

For a category6, we can define a bigraded Hochschild complex

CCk+l(Al) = homl (
k−1

⊗
0=1

A(Li, Li+1),A(Lk, L0))

6You can extend this to A∞ categories, at the cost of more associativity terms, and more signs. For a full exposition, see
[Sei08]
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Notice that A∞ multiplication mk is a CC2(A2−k) cochain.
The differential on this cochain will be application of the composition law at every spot. Let φ ∈ CCk+l(A1)
be some cochain. Then

dφ(a1, . . . ak) =m2(a1, φ(a2, . . . , ak)

±
k−1

∑
i=1

φ(a1, . . .m
2(ai, ai+1), . . . , ak)

+m2(φ(a1, . . . , ak−1), ak)

For the theory that we have set up here, there are similar deformation results as to those in the algebra case.

7.3 Geometric Interpretation of Hochschild cohomology

There is a map from symplectic cohomology to the Hochschild cohomology. In this section, we follow [Sei03b].
Let X be some symplectic manifold with nice proprieties, and pick D some divisor in X. Look at X ∖ U ,
where U is some small neighborhood of D. We can give X ∖ U the structure of a symplectic manifold
with contact-like boundary. In symplectic cohomology, we’ll look at punctured Riemann surfaces with Reeb
dynamics near the boundary. Roughly speaking, the generators are Reeb orbits, and the differential is given
by counting holomorphic cylinders between those orbits.
So, how do we get a map from this to the Hochschild homology for the Fukaya category? Given an Reeb
orbit o, and some set of intersections α ∈ ⊗k

i=0 hom(Li, Li+1), we define the map from Symplectic cohomology
to the Hochschild complex by the count

⟨o,α⟩ ∶= #{Punctured disks with boundary conditions}

of disks that look like this:

Seidel states that we should interpret these disks as counting the deformations we get by deforming the
category geometrically along the divisor D.

7.4 Some Algebra and examples

Proposition 3. Assume that A is a graded k-linear category, and

HH2(Aj) =0 for j ≤ −1 and j ≠ −l
HH3(Aj) =0for j < −l.

Then the set of A∞ structures (agreeing with m1 and m2)are exactly parameterized (up to homotopy) by
deformations coming from HH2(A)−l.

Let’s first define what a homotopy of A∞ categories is:
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Definition 19. A A∞-functor is a map f̄ ∶ A → A between objects, and maps on the morphism spaces

fk ∶ ⊗k−1
i=1 A(Xi,Xi+1) → A(f̄Xk, f̄X0)

satisfying the A∞ relations:

∑
r

∑
i+j+k=l

±fl−j+1(id⊗i⊗mj ⊗ id⊗k)

Two A∞ structures with multiplication m and m′ are called strictly homotopic if there is another A∞ functor,
acting identically on objects, with f1 = id.

Proof. Suppose that we would like to check that some product satisfies the A∞ relations. We’ll fix some
ml+2 ∈HH2(A−l) which we would like to be our deformed multiplication. So, we need to fix in a whole A∞
multiplication

m2 + 0 +⋯ +ml+2 +ml+3 +⋯
where we only know the first 2 non-zero terms. Let’s suppose that we are trying to find mk. The A∞
constraint that mk has to with relation to lower-order terms

dmk = An expression of mi for 2 < i < k, equivalent to Gerstanharber Bracket

This expression would be more complicated if we were not working in the nice case where m1 = 0.

Claim 3. This expression for this bracket is closed under the Hochschild differential.

As the homology vanishes, we know we can always find mk solving this equation. Inductively, we can
build up the differential to solve this problem.
Now to prove the second claim of the proposition which is to show that all A∞ structures on A are homotopic
to one of these.
Let m′ be an A∞ structures. Let m =m2+0+⋯+(m′)l+2+ml+3+⋯, where we’ve deformed the multiplication
structure by m′ at the first place where the Hochschild cohomology does not vanish. What would a strict
homotopy have to satisfy? Since m′ is suppose to be compatible with the category structure on A, we know
that m2 = (m′)2, so the first order matching criteria is already filled. We are therefore looking for a collection
of higher order functions satisfying the A∞ functor relationships. This relationship can be written down as:

dfk = Something like a Gerstanharber Bracket of m and m′, fi for 1 < i < k

This bracket expression checks out to be Hochschild closed, and by the vanishing of cohomology, we can find
solutions for dfk.

Example 14 (The Sphere). Let’s try to compute some Hochschild homology. Let’s look at the sphere, and
some Lagrangian on it. Since the symplectic form on the sphere is not exact, we’ll need to constrain the set
of Lagrangians we consider. In this scenario, we will work with the balanced Lagrangians, which are those
which split the symplectic manifold into two parts with equal area. In this scenario, we have a well defined
Fukaya category, where all of the objects are hamiltonian isotopic to the equatorial lagrangian. So we have
one object, L1 and the homology A(L1, L1) = {e, x}, where x has degree 1 and e has degree 0.
Let’s take a look at CCk+l(Al). This is maps of degree l from k-chains. Since A(L1, L1) only has degree 0
and 1, it means that the dimension of this space is (k

l
) + ( k

l+1
).

Let’s compute some Hochschild cohomology. A basis of CCk+l(Al) is a string e’s and x’s of length k, with l
or l + 1 x’s depending on whether the string is mapped to e or x.

e⊗ x⊗⋯⊗ e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k things with −l x′s.

→e

e⊗ x⊗⋯⊗ e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k things with −l + 1 x′s.

→x
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Let’s call the string η. Basically, the image of η is going to be determined by inserting e’s in different places.
Let’s look at the image of such a string η. I’m going to forget about ± signs for a moment. The image of a
string is the set of all strings where either

� An e has been inserted in a place where the are an odd number of e’s written consecutively in the string
(and not at the start or end of the string.)

� An e has been inserted in at the start or end of the string, and the string η even number of e at the
start or end consecutively.

So, given a string η, mark all the places where you can insert e’s.

e x x e e xe

Notice that the insertion of an e converts an area where you are allowed to insert an e to an area where you
are not allowed to insert an e; the other regions stay the same. So (forgetting about signs and cancellation)
on sees that the image of applying d to any such η produces the following successive images.

e⊗ x⊗ e⊗ x⊗ e⊗ e⊗ e⊗ x

e⊗ x⊗ e⊗ x⊗ e⊗ e⊗ e⊗ e⊗ x e⊗ x⊗ e⊗ x⊗ e⊗ e⊗ e⊗ x⊗ e

e⊗ x⊗ e⊗ x⊗ e⊗ e⊗ e⊗ e⊗ x

You should get a cube with vertices indexed by the valid places to insert an e. At least with characteristic 2,
this means that our differential squares to zero; I’m pretty sure that the ± signs work out in general shows
that differential squares to zero.
This computation shows that the Hochschild cohomology of this category is zero, and therefore the only A∞
structure that we can put on it (up to homotopy) is the trivial one.
However, we could expand our theory to allow for deformations by allowing µ0 deformations. By our results,
these should be unobstructed.
So the short story is once we define the µ0 obstruction term, all the other terms are defined uniquely up to
homotopy.
What does this µ0 term represent? It gives us an idea of how big the upper and lower hemisphere are of the
sphere. It also parameterizes the Lagrangian, as Lagrangians on the sphere are hamiltonian isotopic up to
the difference in area between their two hemispheres.

40



8 Genus 2 curve: Catherine Cannizzo

In [Sei11], Seidel talks both about the Fukaya category of the genus 2 surface, and the complex category
which is suppose to be mirror to this. In this talk, we will only address the Fukaya category.

8.0.1 Geometric Set-up

For us, M will be the genus 2 surfaces, and F(M) will be a Z/2 graded A∞ category of balanced curves
equipped with orientation and spin structures.

Definition 20. Let L be a lagrangian in M , and let σ be the sphere bundle map

σ ∶ L→S(TM)
p↦unit TpL

We call L balanced if ∫L σ∗θ = 0, where dθ = π∗ω.

Claim 4. A nullhomollogous curve is balanced if and only if it divides M into M± such that

χ(M+)/vol(M+) = χ(M−)/vol(M−).

While the balanced condition looks a little strange, notice that every lagrangian can be moved to a
balanced one by displacing it by a non-zero amount of flux; while we are not picking out all of the elements
of the Fukaya category, we are getting a lot of them.
Given an orientation of L, a spin structure on L is a lift of the SOn-frame bundle on L to the Spin(n)-bundle

0→ Z/2→ Spin(n) → SOn → 0.

The obstruction to finding this lift is the nonvanishing of the second Stiefel-Whitney class.

8.0.2 Homological Set-up

In this section, we’ll take a look at the algebraic structure we will be interested in (similar to that developed
in 5.2.1.) Let B be a Z/2 graded A∞ category. Recall that one way to create triangles in a category is to
consider the category of A∞ modules over it. This construction came with a Yoneda embedding:

B →Mod(B)Y ↦ Y = homB(X,Y ).

This is a full and faithful functor, and we can recover an actual triangulated category by taking cohomology.
We will call this category Mod(B).

Definition 21. A category is called split-closed if any endomorphism of an object which is idempotent splits
that object into a direct sum of 2-objects.
Let B be an A∞ category. The split-closed derived category of B, is defined to be the smaller subcategory of
Mod(B) such that

� it contains the image of the Yoneda embedding.

� It is triangulated

� It is split closed.

We denote this category Dπ(B.)
We say that A ⊂ B split generates if every object of B is isomorphic to an element of Dπ(A).
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Having a set which split generates a category allows us to completely determine the structure of the
split-derived category, provided that we know all of the morphisms between the generators.
In the Fukaya category, we can characterize split-generalization geometrically.

Definition 22. Let M be two dimensional, and L ⊂M a lagrangian circle. A Dehn twist of M by L is the
self-homeomorphism given by

� Identity outside an annulus neighborhood of L.

� (s, t) ↦ (se2πit, t) in a small annulus neighborhood of L.

In [Sei03a], it was shown that taking the Dehn twist of a L0 along a different lagrangian L fits into an
exact triangle. This is called Seidel’s exact triangle,

HF ∗(L1, L0) ⊗L1 L0

τL1(L0)

ev

[1]

Lemma 1. Suppose that {L1, . . . Lr} are objects in F(M). Suppose that L0 is isotopic (or reversed) to

τLr⋯, τL1L0

Then L0 is split-generated by L1 through Lr.

One can also prove a result which is a little easier to check from the previous lemma:

Lemma 2. Suppose that τLr⋯τL1 is isotopic to the identity. Then {L1, . . . Lr} split generate the Fukaya-
Category.

8.1 Computations

We are going to compute finitely many (deformed) structure maps for a well-chosen Lagrangian. Here is our
plan:

1. First we find split generators for the Fukaya category 8.1.1.

2. Even though there are multiple generators, we will able to reduce computations to one lagrangian.

3. The final picture is used for computing the structure maps µi for this Lagrangian.

By “finite determinacy”, we will not need to compute any higher order structure maps. We will then find
a candidate mirror (along with B-branes), and show that these structure maps agree. This will prove our
mirror statement.

8.1.1 The Split Generator

Our goal here is to exhibit the genus 2 surface as a double branched cover of CP1. The branching that we
will use is given by

√
P (z) where

P (z) = z
5

∏
k=0

(z − ξk5 )
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where ξ5 is a fifth root of unity. The branch that you wind up on is dependent on the parity of number of
branch points a loop contains.

x

x
x

x
x

x

CP1 with 6 branch points.

If we want to visualize what the branched cover of this is, we need to select some branch curves

x

x
x

x
x

x

The topology of the branch cover is given by “opening up” the CP1 along these branch curves, and gluing
together. The CP1 opened up at 3 branch curves is just a sphere with three punctures. This gives a 2:1 map
from M → CP1 branched at these 3 points.

x x x x

xxxx

x x x x

8.1.2 The Curves

We are going to draw 5 curves on the base S2 with endpoints on certain branches. In dimension 2, we know
that every immersed closed 1-submanifold is a lagrangian.

� First, we will have to show that the curves that we describe lift up actual Lagrangians on the branch
cover M

� Then we will have to argue that these curves split generate the Fukaya category.
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Here are our 5 candidate curves:

x

x
x

x
x

x

We want these Lagrangians on their lift M to be invariant under “hyper-elliptic involution”, which sends
points on

√
P (z) to −

√
P (z).

Lagrangian lifts under hyperelliptic involution

Remark 7. Notice that a Dehn-twist along one of these lifting only corresponds to half of a twist in the base
(as

√
ei2πt = eiπt. )

8.1.3 Split Generation

The Li have multiple intersections with each other, which means that the subgroup of the mapping class
group that they generate via Dehn twists is hard to describe. Since the “easier” condition to check for
generation is that a certain composition of the Dehn twists is isotopic to the identity (2), we would like
to understand this group structure. To simplify, we will instead show that a different set of curves split
generate, and then show that our original Lagrangians split generate these new ones. We start by looking
at a different set of curves, K1 through K4

x

x
x

x
x

x

Since these curve only intersect each other at one point, the Dehn-twists between them satisfy the same
relations as the braid groups on 5 strings. The map from the braid group to these twists is a group
homomorphism

Φ ∶ Br5 →Mapping Class Group of M

σi ↦τki
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We can use our knowledge of the braid group to prove that these Ki split generate.

Lemma 3. The Lagrangians {L1, . . . L5} lifted to M split generate Dπ(F(M)).

Sketch of Proof. The kernel of this map Φ is infinite cyclic, generated by a multiple of the diagonal element
∆4 = (σ1σ2σ3σ4)4. One can check that the map (τk4⋯τk1)10 is isotopic to the identity, and by 2, the Ki

split generate.
A calculation shows that τL5⋯τL1(K2) ≃ K2[1] by isotopy, and a similar result for the other Ki. By 1 the
Li split generate the Ki, and therefore the whole Fukaya category.

8.1.4 Reducing to 1 generator

Notice that the 5 Lagrangian Li all look similar to each other. We have a Z/5 action on the base S2

interchanging the roots of unity, and it lifts to an action of M .

Claim 5. M/(Z/5) is a orbifold sphere with 3 orbifolded points.

The orbifolded points on the sphere are 0 and ∞. Since 0 is a branch point, this orbifolded point lifts to
a single orbifolded point on M . However, ∞ is lifted to two orbifold points, which we will call ∞±.

In this quotient, all 5 Lagrangians get identified to a single one. What we are going to do it to identify
the two dotted lines in this picture:

x

x
x

x
x

x

The Lagrangians that survive are those contained within the “pie slice”. This will look like this “orbifoldy”
picture

0 ∞1

x

Notice that there is still a branch point! Recall that we are suppose to “travel” through the branch point to
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get the ±
√
P (x) genus two curves, so we glue this together to get a sphere:

0, x

∞1 ∞2

x

We have one lagrangian L̄ which is no longer embedded- it has 3 self intersection points. We call this
orbifolded sphere M̄ .
We want CF ∗(L̄, L̄) = ⊕γ∈ΓCF

∗(L,L)γ where

Γ =Horb
1 (M̄) = (Z/t)3/⟨∆⟩.

Here, ∆ = (1,1,1). which acts by rotation around the orbifold points. Recall that H1(S2) = 0. Here, need to
go around an orbifold point 5 times to get 0 in Horb

1 , or we need to go around all three points at the same
time to get 0.

9 Genus 2, Part II, Catherine Cannizzo

One can think of M̄ as X/Γ, where X is the universal abelian cover M̄ . This is a 25:1 cover. In addition
to indices (coming from Γ), we are going to start getting “weights,” which are the elements of the group Γ
which are needed to make a generator lie in CF ∗(L,L)γ .

Definition 23. CF ∗(L,L)γ = CF ∗(Lγ(L)). In the case where γ = 1, then

CF ∗(L,L) = CM∗(f) = Ce⊕Cq

which correspond to a min and max point of some Morse function f .

Let’s do some calculations. We end up with 8 self intersections between L̄ and a perturbation of itself.

0, x

∞ ∞

x

e q
x1, x̄1

x2, x̄2

x3, x̄3
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The moduli spaceM(x̄0, . . . , x̄d) with weights γi is empty unless γ0 = γ1⋯γd. This is basically saying that if
we have a disk, the boundary of the disk should be a contractible loop in the “orbifold” sense, which means
that sum of the weights is zero.
Here is a table of the generators and their appropriate weights:

gen e x1 x2 x3 x̄1 x̄2 x̄3 q
weight (0,0,0) (1,0,0) (0,1,0) (0,0,1) (0,1,1) (1,0 1) (1,1,0) (1,1,1)
index 0 1 1 1 2 2 2 3

The relation of the weights are that (5,0,0) = (0,0,0) and (1,1,1) = (0,0,0).
It turns out that the only place where µ1 can exist is between e and q. This is due to the calculation of
index of µik, where i is the number of input, and k is the count of covering of orbifold points. The degree of
such a map must be 6 − 3i + 4k. Therefore, the only time that this count can exist is when k = 0. The only
points that have k = 1 are the points e and q. This is the same as counting the regular Floer differential of
this equator with itself, and this Morse differential is zero. Therefore, the µ1 map vanishes.
Now let’s compute µ2. In a deformation sense, we can expand this out as

µ2 = µ2
0 + µ2

1 +⋯

The term µ2
0 is suppose to count triangles in the pair of pants and misses the divisor: M̄ ∖{0,∞1,∞2}. The

term µ2
1 counts triangles that pass through on orbifold point of D̄, with ramification 5.

Remark 8. There is a tensor η ∈ Γ0((T ∗M̄)⊗2) which vanishes to order 2 at orbifold, which is

53w2dw3

, where w is the orbifold coordinate.

To account of all of the proper index shifts due to the orbifolding :

deg(µik) = 3(2 − i) + 2k ⋅ 2 = 6 − 3i + 4k.

Claim 6. No disks for µ2 pass through the orbifold points.

The counts of triangles can be broken into constant and non-constant triangles.

� There are 6 constant triangles, which are given by the triangles which satisfy γ0 = γ1 + γ2 and have
the appropriate indexes. Note that while these triangles are constant on the orbifolded surface, and
so they get lifted to different things. After considerations involving gradient flow of the chosen Morse
function, we have

1. µ2(xi, x̄i) = −µ2(x̄i, xi) = q.
2. µ2(xi, e) = −µ2(e, xi) = xi.
3. µ2(x̄i, e) = µ2(e, x̄i) = x̄i.
4. µ2(q, e) = −µ2(e, q) = q.
5. µ2(q, q) = 0.

� There also exist some non-constant triangles in µ2, which you have to take a look at the paper. The
general idea is that there is a large triangle on the front and back. Counting this triangle (taking into
account weights, indices, etc.) gives µ2

0(xi, xj) = εijkx̄k.

The key point is that these relations match up with an exterior algebra,

CF ∗(L,L) e x1 x3 x̄1 x̄2 x̄3 q
Λ(C3) 1 −ξ1 ξ2 ξ3 x2 ∧ ξ3, ξ1 ∧ ξ3 ξ1 ∧ ξ2 ξ1 ∧ ξ2 ∧ ξ3
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For µ3, we have the following map:
µ3

0(x3, x2, x1) = −e.
which is the triangle which goes through the front of this diagram. There are no other contributions due to
degree reasons and weight restrictions.
For µ4, we count pentagons. This map is determined by the A∞ relations, and we don’t need to compute
this.
For µ5, we do not have constant triangles.

µ5
1(x1, . . . , x1) = µ5

1(x3, . . . x4) = −µ5
1(x2, . . . , x2) = −e.

This counts a hexagon which wraps around in a really funny way.

9.0.5 How to go from here

Once you do these calculations, finite determinacy gives us a map CF ∗(L̄, L̄) ↦ Λ(C3). We’ll need the
algebraic geometry side to fill in the story. The 1 in µ5

1 says that we are counting something that goes
through a single orbifold point with ramifications 5.
We can match the generators of CF (L̄, L̄) with the exterior algebra Λ(V ), where V = C3.
The maps µ1 and µ2 agree with each other, where the A∞ multiplication turns into wedge product. However,
we do not have agreement on higher orders, as the Fukaya category has nontrivial µ3, µ4 and µ5. What we
do is use Hochschild cohomology to deform the wedge multiplication so that it will agree with the Fukaya
Category.

9.1 B-side, mirror and Category

One thing to keep in mind is that for the pair of pants, the mirror is known to be the Landau-Ginzburg
model (C3,−v1v2v3). So, our hope is that the mirror to the genus two curves looks something like this, as
our CP1 missing three points is again a pair of pants.
Let V be C3, and let Z be the group generated by the matrix

⎛
⎜
⎝

ζ
ζ

ζ3

⎞
⎟
⎠

where ζ is a primitive 5th root of unity. One variety we might consider is

X̄ = V /Z,

which is unfortunately singular. There is a crepant resolution π ∶X → X̄ which is equipped with a superpo-
tential,

(X,W = v1v2v3 + v5
1 + v5

2 + v5
3).

Remark 9. Here, the technical definition of the crepant resolution is the Hilbert scheme of degree 5 of C3,
which is ideals I ⊂ C[v1, v2, v3] such that C[v1, v2, v3]/I has finite dimension 5. We then take a Z invariant
version of this thing.

Morally, X is like a blowup of X̄, but it preserves the first Chern class. In this case, instead of inserting
a copy of CP2, we get CP2 and the Hirzerbuch surface

F3 = P(O ⊕O(−3)).

In the toric world, X̄ can be constructed as an affine toric variety. For a Landau-Ginzberg model on the B
side, we want something that uses a superpotential function W . Normally on the B side, we would study
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the derived category of coherent sheaves, but in this case we will study the category of singularities of the
superpotential,

Dπ
sing(H)/

Here, H = π−1(H̄), where H̄ = W −1(0)/(Z/5), which is a subset of X̄. This is the category which we hope
to be the same as DπF(M).
The definition of the derived category of singularities is Dπ

sing(W −1(0)) =Db(W −1(0))/Perf(W −1(0)).

� The first portion is the bounded derived category of coherent sheaves on W −1(0),

� The set of perfect complexes are perfect complexes are the complex isomorphic to the bounded com-
plexes of locally free sheaves.

The quotient that we are taking is formally inverting morphisms whose cones are perfect complexes. We do
need to take the split closure here.

Claim 7. Dπ
sing(W −1(0)) is split generated by the skyscraper sheaf at 0, denoted SW−1(0),0.

Here is our plan of action

� We relate Db
sing(W −1(0)) with matrix factorizations on W . An example to keep in mind is that the

set of points xy = 0 is singular because the ideal (xy) factorizes. So, the set of factorizations should
tell us something about the singularities.

� From matrix factorizations MF (W ), we are going to need to work with Ω●(V ). In our language Ω●(V )
is a chain complex, and an example of matrix factorizations.

� We can apply Koszul duality to go from Ω(V ) to Λ(V ).

� Applying Hochschild homology of Λ(V ) to get deformations and finite determinacy.

Definition 24. A matrix factorization is Z/2 graded projective C[V ] module E along with a differential δE
such that

δ2
E =W ⋅ idE .

In this case, we are meant to think of W as an obstruction to ∂2 = 0.

Theorem 10 (Orlov). There is an equivalence of categories between

H0(MF (W )) ≃Db
sing(W −1(0))

E ↦ coker(δ1
e ∶ E1 → E0)

We know that SW−1(0),0 split generates the right hand side. On the left hand side, this corresponds to
the object

E = Ω(V )
with the differential δE = ιη − γ ∧ (−) where η = ∑ viξi, and γ = ∑k gkdvk, and the gk come from the
superpotential,

g1 = − v2v3/3 + v4
1

g2 = − v1v3/3 + v4
2

g3 = − v1v2/3 + v4
3

A calculation shows that δ2
E = −γ(η) =W .
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9.2 Koszul Duality

In this section, we will produce an A∞ structure on A = Λ(V ), and we’ll see it’s the same as the one obtained
on the Fukaya category that we’ve already defined. We would like to go between the A∞ structure on the
category A (which has some kind of finite determinacy) to B = homC[v](Ω(V ),Ω(V )), which is related to
matrix factorizations. The interchange between these two is given by Koszul duality, and a tool called the
homological perturbation lemma. In any case, this allows us to work on A instead. This finite determinacy
property means that up to equivalence, there exists a unique Maurer-Cartan element α ∈ 1 such that the
Hochschild-Kostant-Rosenberg map has

Φ1(α3
0) = − v1v2v3

Φ(α5
1) =v5

1 + v5
2 + v5

3

These notions tell us something about the deformation theory of the category. In Seidel’s notation,

CCd(A,A) = ∏
i+j−1=d

homj(A⊗i,A)

which comes with a differential and product making it a dg Lie-algebra7 Given a fixed product structure,
we want to see when we can deform the structure to an A∞ structure. Given α ∈ CC1, we get a valid
deformation whenever we satisfy the Maurer-Cartan equations.

∂α + 1

2
[α,α] = 0

There is a classical result that states

HKR ∶HH(A,A) ≃ C[[V ]] ⊗Λ(V )

HKR ∶ β ↦
⎛
⎝

Φ
⎛
⎝
β ∶ ξ ↦

∞
∑
j=1

βj(ξ, ξ)
⎞
⎠
⎞
⎠

which are polyvectors. There is a technical detail, in that the tangent space of the Maurer-Cartan elements
consist of suitable γ of degree 0. We want to exponentiate this γ, and we will need our Lie algebra to have
filtered pronilpotentcy. This can be thought of as some kind of completion. One way to do this is to add in
a formal parameter h̵ to our Lie algebra.
The main players are the following completed versions of CC(A,A) and C[[V ]] ⊗Λ(V ).

gd = ∏
i,j,k∣P

Sym1(V ∨) ⊗Λj(V )Gh̵k

and
Ld = ∏

i,j,k∣P
Homj(A⊗i,A)G, hk

which are quasi-isomorphic due to Kontsevich formality.

Lemma 4. Any Maurer Cartan element α = (α0, α2) ∈ g1 such that α0 ≅ W mod F7C([[V ]]) can be
reparameterized to agree with W exactly.

The punch line is that g is easier to work with than h, and the lemma determines finite determinacy on
h. The upshot is that Dπ(F(M) =Dπ(A ⋊Z) and Dπ

sing(H) =Dπ(A ⋊Z).

7Notice the slightly different degree convention here. µi has degree 2− i for the A∞ structure maps, and deformations occur
in CC1.
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10 Wrapped Fukaya Categories, Benjamin Gammage

So far, we have be interested in the Fukaya category of a compact manifold M . Today we will study one
generalization of the Fukaya category to non-compact domains.

Definition 25 (Liouville). (M,λ) is called Liouville if dλ = ω is a symplectic form on M , and Zλ generates
a complete expanding flow on M , where

ω(Zλ,−) = λ

We will think of M as having two portions

M =M in ∪∂M [1,∞) × ∂M

The sticking out portion is called the collar, and is given the coordinate r

r

On the collar, we think of λ = r(λ∣∂M). The boundary ∂M is contact with respect to the form λ.

Definition 26 (Contact). (N2n+1, λ) is called contact if λ∧ (dλ)n ≠ 0. A submanifold is called Legendrian
if L is isotropic for α.

In this setting, we can defined the wrapped Fukaya Category. For objects, we take a finite collection of
exact Lagrangians such that

� λ∣L = 0 outside of a compact set.

� L can be broken into two parts, L = Lin ∪∂L [0,∞) × ∂L.

We will assume that 2c1(M,L) = 0 ∈H2(M,L),so that we can pick bicanonical trivialization. We will assume
that all L are spin, and fix spin structures. This will let us choose a Z grading on things like the Floer theory.

Question 2. What type of hamiltonian perturbations are allowed as we go off towards the infinity end of
the collars.

There are two possible answers:

� Small perturbations, would give you an “infinitesimally” perturbed Fukaya category, which gives you
the Nadler-Zaslow category.

� Big perturbations, which give you the wrapped Fukaya category.

Let
H(M) = {H ∶M → R ∣ eventuually, H(r, y) = r2}

Since this is quadratic, the time one flow gets larger and larger the farther out you go along r. The time 1
flow of one of these Hamiltonians is the time 2r Reeb flow on the contact manifold {r} × ∂M . The result is
that taking a lagrangian and perturbing by one of these Lagrangians causes it to wrap around the collar of
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M .
With this, we define

X(L0, L1) ∶= {time 1 flows starting on L0 and ending on L1}

Let us assume that all the X(L0, L1) are non-degenerate.
For generic λ, this holds after a small hamiltonian perturbation of L0 and L1.
On a Liouville domain, there is a nice choice of almost complex structures that we should consider. Let
J (M) be the set of almost complex structures such that

� J is ω-compatible.

� J is contact type on the boundary, so that λ ○ J = dr on the ends.

Now let {It} be a family of compatible almost complex structures. Then we will take a count of holomorphic
strips u ∶ (−∞,∞) × [0,1] →M such that

� It satisfies the Floer equation;
(du − xh ⊗ dt)0,1 = 0

� It has boundary u(s,0) ∈ L0 and u(s,1) ∈ L1.

� The energy is defined to be E(u) = A(x0) −A(x1).

Given x0, x1 ∈ X(L0, L1), the let R̃(x0, x1) be the space of strips between x0 and x1. In the case where all
of the analysis works out, we can check that

R(x0, x1) ∶= R̃/R

is a smooth manifold of dimension ∣x0∣ − ∣x1∣ − 1 with a compactification by broken strips R̄(x0, x1) .

x0 x1

L0

L1

z t

We don’t expect X(L0, L1) to be finite, but it is ok!

Lemma 5. For any x1 R̄(x0, x1) = ∅ for all but finitely many x0.

The idea of proof is to assign an action to the intersection points. Far away from the boundary, the
action of x0 is approximated by a term −∫

1
0 x

∗
0λ = ∫

1
0 λ(x)dt = ∫

1
0 2r2dt, which becomes smaller as the r

value of x0 increases. This means that no x0 too far out will contribute to the space R̄ because it’s action
will be too small to contribute.
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10.1 Defining the Homology Theory

As usual, let’s set
CW ●(L0, L1) = ⊕

x∈X(L0,L1)
∣Ox∣

where Ox is the orientation on the line of x. We can define a differential by taking a count of R(x0, x1).
This gives us a homolog HW ●(L0, L1).
While the definition of homology goes smoothly, we will run into a problem when we try to define the higher
A∞ operations. Recall when we defined HF ●(M,Ht), for compact M , we showed independence of Ht by
interpolating between any two Hamiltonians by a family Hs,t. We used a perturbed Floer equation which
counts strips

x0 x1

L0

L1

HsH0 H1

This gives us continuation maps HF ●(M,H0) →HF ●(M,H1) →HF ●(M,H0). To get these maps, we need
a priori a bound on the energy

E(u) = A0(x0) −A1(x1) + ∫
z
(∂H(u(s, t))ds ∧ dt)

where the last term accounts for the change in the hamiltonian. If we can be assured that this in bounded
below, we would be set in the case of the Wrapped Floer theory. For compact M , we are good, but for
non-compact M , we could have Hs increase in the r direction, which would be bad!

Example 15 (What can go wrong). Let M be non-compact, and let Hτ = τr on the ends. We can get
continuation maps from HF ●(M,Hτ) →HF ●(M,Hτ ′ for τ ′ > τ . However, we don’t have continuation maps
going the other way. This is because we are only looking at length at most τ , so we can’t map the “big chords”
to the “small chords.”

These two groups are not isomorphic. In order to get something which is invariant, we would need to
take limτ HF

●(M,Hτ) = SH●(M), which gives us the symplectic homology.
Let’s look at disk with three punctures, with appropriate boundary conditions. To get our energy bound,
there is no way to give the same perturbations everywhere, the output must have perturbation at least 2H.

H

Input Output

H

≥ 2H

L0

L1

L2

This means that the natural map on the Wrapped Floer complex is

CW ●(L1, L2,H) ⊗CW ●(L0, L1,H) → CW ●(L1, L2,2H).
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This leads to the problem, which is that the set of allowed Hamiltonians H are those which have H = r2.
Here, we need H = 2r2. Luckily, we have a trick, which is that we required our Lagrangians at ∞ to do
nothing. This means that if we rescale the infinite end, nothing happens. So, we will rescale infinity. Let ψρ

be the time logρ flow of Zλ, the Liouville vector field. Since rescaling doesn’t change anything, we get an
isomorphism

CW ●(L0, L1,H, It) ≃ CW ●(ψρL0, ψ
ρL1,

H

ρ
ψρ, (ψρ)∗It

Note, that ψρ(r, y) = (ρr, y). So r2 ○ ψr = ρ2r2. take ρ = 2, and get the isomorphism that we want. There is
quite a bit of work to make this work, as we need to make this compatible with all A∞ structures. For us,
we are going to do stretching in the disk. Let S = D ∖ {ξ1, ξ2, ξ3} be a punctured disk. Take the strip-like
ends, and split it into a z0 and z+. Take maps ε0 ∶ Z− → s and ε1,2 ∶ Z+ → s which are assigning strip like
ends to our disk.

Z−

Z+

Z0

Pick ρs ∶ ∂D → [1,2] so that it is 1 near {ξ1, ξ2}, and 2 near ξ0.
Finally, choose αs such that

(εk)∗αs {
2dt k = 0
dt k = 1,2

Choose HS ∶ S →H(M) and Is ∶ S → J (M). We call this a Floer Datum

Z−

Z+

ψ2x0ψρs(z)L1

ψρs(z)L2

ψρs(z)L0

We’ll want to make a universal and conformal consistent choice of Floer datum for stable disks, i.e. so that
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Floer data on boundary is determined up to scaling by lower strata.

Lemma 6. We can do this.

This will give us all of the µi, which determines the wrapped Fukaya category of M .

10.2 Example

We’ll look at the cylinder T ∗S1 with the standard symplectic structure λ = rdθ, and H = r2. We let our
lagrangian L to be a cotangent fiber L = R × {pt}. It turns out (spoiler alert!) that this will generate the
Fukaya category.
Then CW (L,L) is generated by intersection s of L with φ1

H(L).

So CW ●(L,L) = ⊕n∈ZZ × ∣Oxn ∣ Now we will calculate µ2. This is suppose to count things which have
perturbation φ2 on the second input, which is to take this less squiggly lagrangian.

The take away is that µ2(x0, x1) = x1. In fact, one can check that

mu2(xi, xj) = xi+j .

For grading reasons, there are no higher A∞ differentials, so HW ●(L,L) = C[Z]. This will turn out to be
not so surprising, as this is the set of chains on the base loop space.
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11 Wrapped Fukaya Category of the Pair of Pants, Denis Auroux
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12 Abouzaid’s Generation Criterion, Jeff Hicks

12.1 Recall Generation Criterion

One of the problems in understanding the Fukaya category is to get an understanding of the objects in the
category (as we do not have a very good understanding of what Lagrangians exist in a symplectic manifold.
)
Our approach so far has been to pick out a certain class of Lagrangians, to show that these “split generate”
the category. Abouzaid’s generation criterion provides a way to do this.

Notation 1. In this section:

� (M,ω) is a Liouville manifold

� W is the Wrapped Fukaya category of M .

� B is a full subcategory of M

Theorem 11. There is a map
HH∗(B) →HH∗(W) → SH(M)

such that whenever the identity lies in the image, B split-generates W.

Outline of Proof. There is an algebraic component and geometric component to this proof.
Algebraic Input: What we need to show is that a particular lagrangian K ∈ Ob(W) is split generated by
objects in B . For any pair L,L′ ∈ B, there is a diagonal map

∆ ∶HW ∗(L,L′) →HW ∗ (K,L′) ⊗HW ∗(L,K)

which is like a “dual” to the multiplication map. When we assembly these together to be a map of A∞
modules, this is the map between

∆ ∶ B → Y lK ⊗Yrk
where these are the left and right W-modules given by the Yoneda functor.
Whenever we have a morphism between bimodules, we get a morphism between Hochschild homology with
coefficients in those bimodules. This gives us a map

HH∗(∆) ∶HH∗(B,B) →HH∗(B,Y lK ⊗YrK)

There is an interpretation of Hochschild homology whenever the coefficients are taken in a product of a left
and right module.

HH∗(B,Y lK ⊗Yrk) =H∗(Y lr ⊗B YrK)
This object comes with the multiplication map back down to the wrapped Floer cohomology of K, giving
us the composition

HH∗(B,B)
∆Ð→HH∗(B,Y lK ⊗YrK) ≃H∗(Y lr ⊗B YrK) µÐ→HW ∗(K,K).

Lemma 7. Whenever the identity of HW ∗(K,K) is in the image of this map, B split-generates K.

This gives us an algebraic criterion for generation.
Geometric Input: There is a geometric interpretation of this map, which is the composition of the open-
closed and closed-open maps. One interpretation of the Hochschild homology of the Fukaya category is
given by the Symplectic cohomology, which is a count of pseudoholomorphic disks which have boundaries
approaching Reeb orbits in the boundary.
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� The Open-Closed map from the Hochschild homology to Symplectic Cohomology counts the number
of punctured disks with internal puncture converging to a Reeb orbit, and boundary on the Hochschild
chain.

� The Closed-Open map from the Symplectic Cohomology to the Wrapped Fukaya category counts
punctured disks with one boundary point mapping to the Reeb orbit, and the other boundary point
mapping to a chord.

HH∗(B,B)
H∗(OC)ÐÐÐÐ→ SH∗(M) H∗(CO)ÐÐÐÐ→HW ∗(K,K)

This again gives us a map from Hochschild homology of B to symplectic cohomology.

Lemma 8. This is the same as the composition defined above.

12.2 Algebraic Preliminaries

First, we are going to ask what algebraically we need to have a twisted complex split generate a particular
Lagrangian K. We would need to show that K is a subobject of some twisted complex L. To exhibit K as
a subobject of L, we need the following commutative diagram:

K K

L

id

If we were working with a single L, this would be the exhibition of a triangle that looks like this:

p q

id

K

L

K

µ2

Because we are working with a twisted chain complex, the top edge can have some additional components.
The existence of such morphisms is (roughly) the same as saying that Hom(K,B)⊗Hom(B,K) → Hom(K,K)
hits the identity map. To make this precise you need the language of modules over A∞ module, or Hochschild
chains. To take into account that we are allowing the middle section to be a twisted complex, we are checking
that the identity is in the image of:

HH∗(B,Y lK ⊗ Y rK)) µÐ→HW ∗(K,K).

Here, the Hochschild chain component gives us the twisted complex.
However, we might think that this is hard to analyze without considering K, as both the domain and
codomain depend on K. There is a way to remove this dependence in at least the domain by precomposing

with a “comultiplication” map from B ∆Ð→ Y lK ⊗Y rK . Recall that a map of A∞ bimodules also preserves some
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kind of commutivity of the structure maps, so we have to give a lot of morphism. This is given by taking a
count of curves with r + s + 3 punctures, arranged as :

input

input

ξ∣s ξ∣1
⋯

⋯
ξ1

ξ

ξr

Where the top punctures go to chords in {X(Lk−1, k)}rk=1, the bottom punctures go to chords {X(Lk−1, k)}sk=1,
and the three remaining punctures go to

� A chord between L∣0 and L0,

� The “output” chords in CW ∗(K,Lr) and L∣s,K.

This produces a map A∞ bi-module map

∆r∣1∣s ∶ (
1

⊗
i=r
CW ∗(Lr−1, Lr)) ⊗ CW ∗(L∣0, L0) ⊗ (

s

⊗
k=1

CW ∗(L∣k, L∣k−1)) → CW ∗(L∣s,K) ⊗CW ∗(K,Lr).

To actually define this map takes a substantial amount of work, to check that the moduli spaces that are in
this count are well defined.
Putting this together gives us a composition

HH∗(B,B)
∆Ð→HH∗(B,Y lK ⊗YrK) ≃H∗(Y lK ⊗B YrK) µÐ→HW ∗(K,K).

This composition amounts to taking a count of holomorphic disks that look like this:

B B

K K
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We will want to express these disks geometrically.

12.3 Symplectic cohomology

This can be expressed with symplectic cohomology. We give a quick overview here of the definition:
A Reeb vector field Rα on a contact manifold (Y,λ) such that

ιRαdα = 0

α(Rα) = 1

� The generators are Reeb orbits in the contact boundary

� The differential is given by taking a count of holomorphic disks going between Reeb orbits

The picture you should have in mind is something like this:

The differential counts the cylinders between these orbits. The moduli space cylinders satisfies a compacti-
fication by broken curves causing the differential to square to zero.

12.3.1 Identity

The identity component in symplectic homology is given by the Reeb orbits which bound holomorphic disks.

12.3.2 Open Closed and Closed Open maps

There is a map from symplectic cohomology to the Lagrangian cohomology which is given by counting disks
with a single interior puncture and a single marked point on the boundary. The map is given by counting
rigid holomorphic disks with the strip-like end going to the self Reeb chord of a Lagrangian K.

Reeb Chord K
Element of CW (K,K)

We call this the “closed-open map” CO ∶ SH(X) →HW (K,K).

Claim 8. The identity of HW (K,K) is in the image of the open-closed map.
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Proof. The image of Reeb orbits which bound holomorphic disks is the identity in the Wrapped Fukaya
category. These are cylinders attached to disks by a gluing argument.

There is also a map from the Hochschild Homology of the Wrapped Fukaya category to the Symplectic
Cohomology, given by counting disks of the following configuration:

This map gives us a “geometric deformation” of the Fukaya category by considering the disks which are
removed by going through this divisor.
The space of open closed and closed open cylinders can be glued together into the space of all cylinders from
cycles of Lagrangians in B to

12.4 Putting it Together
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